Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:02:55.027Z Has data issue: false hasContentIssue false

Damage and Crack Propagation at a Microstructural Scale

Published online by Cambridge University Press:  15 February 2011

Elisabeth Bouchaud
Affiliation:
DSM/DRECAM/SRSIM, CEA-SACLAY, 91191 GIF-SUR-YVETTE Cedex, France
Florin Paun
Affiliation:
ONERA (DMMP), 29, Av. de la Division Leclerc, 92322 CHATILLON Cedex, France
Elodie Ducourthial
Affiliation:
ONERA (DMSE), 29, Av. de la Division Leclerc, 92322 CHATILLON Cedex, France
Get access

Abstract

A quantitative analysis of the morphology of damage cavities in metallic materials is performed. At larger length scales, the self-affine correlation length of fracture surfaces is shown to be correlated to the grain size. These observations suggest a new scenario for the origin of scaling laws observed on fracture surfaces. It is argued that they reflect strong correlations in damage created prior to fracture during crack propagation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B.B., Passoja, D. E., Paullay, A.J., Nature 308, 721 (1984).Google Scholar
2. Bouchaud, E., Lapasset, G., Planès, J., Europhys. Lett. 13, 73 (1990).Google Scholar
3. Maloy, K.J., Hansen, A., Hinrichsen, E.L., Roux, S., Phys. Rev. Lett. 68, 213 (1992).Google Scholar
4. Imre, A., Pajkossy, T., Nyikos, L., Acta Metall. Mater. 40, 1819 (1992).Google Scholar
5. Bouchaud, E., Lapasset, G., Planès, J., Navéos, S., Phys. Rev. B 48, 2917 (1993).Google Scholar
6. Schmittbuhl, J., Gentier, S., Roux, S., Geophys. Lett. 20, 8 (1993); ibid, 639 (1993).Google Scholar
7. Schmittbuhl, J., Roux, S., Berthaud, Y., Europhys. Lett. 28, 585 (1994).Google Scholar
8. Guilloteau, E., Charrue, H., Creuzet, F., Europhys. Lett. 34, 549 (1996).Google Scholar
9. Bouchaud, E., J. Phys. : Condens. Matter, 9, 4319 (1997).Google Scholar
10. Morel, S., Schmittbuhl, J., Lopez, J., Valentin, G., Phys. Rev. E 58, 6999 (1998).Google Scholar
11. Daguier, P., Hénaux, S., Bouchaud, E., Creuzet, F., Phys. Rev. E 53, 5637 (1996)Google Scholar
12. Daguier, P., Nghiem, B., Bouchaud, E., Creuzet, F., Phys. Rev. Lett. 78, 1062 (1997)Google Scholar
13. Hinojosa, M., Bouchaud, E., Marcon, G., in preparation.Google Scholar
14. Bouchaud, J.-P., Bouchaud, E., Lapasset, G., Planès, J., Phys. Rev. Lett. 71, 2240 (1993)Google Scholar
15. Edwards, S.F., Wilkinson, D., Proc.Roy. Soc (London) A 381, 17 (1982)Google Scholar
16. Leshom, H., Nattermann, T., Stepanow, S., Tang, L.H., Annalen der Physik, 6, 1 (1997).Google Scholar
17. François, D., Pineau, A., Zaoui, A., Comportement mécanique des matériaux, Ed. Hermès, , (1993).Google Scholar
18. Nakano, A., Kalia, R.K., Vashishta, P., Phys. Rev. Lett. 73, 2336 (1994).Google Scholar
19. Nakano, A., Kalia, R., Vashishta, P., Computing in Science and Engineering, Special Issue on Dynamic Fracture Analysis, September/October 1999, p. 39.Google Scholar
20. Bouchaud, E., Paun, F., Computing in Science and Engineering, Special Issue on Dynamic Fracture Analysis, September/October 1999, p. 32.Google Scholar
21. Hinojosa, M., Nghiem, B., Bouchaud, E., MRS Fall Meeting, Boston (U.S.A.) (1998).Google Scholar
22. Brutzel, L. Van, PhD thesis (1999), available from E. Bouchaud.Google Scholar
23. Daguier, P., Bouchaud, E., Lapasset, G., J. Phys. IV France 8, (1998).Google Scholar
24. Ducourthial, E., Bouchaud, E., J.-L. Chaboche, Roudolff, F., in preparation (1999).Google Scholar
25. Kachanov, M., Adv. In Appl. Mech. 30, (1994).Google Scholar