Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:46:31.819Z Has data issue: false hasContentIssue false

Czochralski Growth of Oxide Laser Crystals

Published online by Cambridge University Press:  15 February 2011

Milan R. Koka*
Affiliation:
Union Carbide Crystal Products, Washougal, WA
Get access

Extract

The most widely used active elements of optically pumped solid state lasers are crystals of inorganic oxides. Such oxide materials crystallasing in either garnet or corundum structures are prepared on industrial scale by the pulling technique known as Czochralski Crystal Growth. The description of the present state-of-the-art in Czochralski growth is described along with critical variables involved in growth of large size, high quality oxide crystals. The description of crystal growth of ruby, yttrium aluminum garnets, and titanium sapphire is presented. The effects of compositions, ambient atmospheres, crystal growth variables, and environmental conditions on individual crystal types are described. Suitability of the Czochralski technique for crystal growth of different oxides is discussed with emphasis on material properties such as phase diagram implication (congruency of melting), melting temperatures, crucible materials, effects of doping ions, and high temperature melt chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Verneuil, A., Chem. Ztg. 35, 259 (1911).Google Scholar
[2] Buckley, H.E., Crystal Growth(Wiley, New York, 1951).Google Scholar
[3] Teal, G.K. and Little, J.B., Phys. Rev. 78, 647 (1950).Google Scholar
[4] Kyropoulos, S., Z. anorg. Chem 154, 308 (1926).Google Scholar
[5] Ozisik, M.N., Radiative Transfer and Interactions with Conduction and Convection (Wiley, New York, 1973).Google Scholar
[6] Carruthers, J.R., in Preparation and Properties of Solid State Materials, Vol.3, edited by Wilcox, W.R. and Lefever, R.A. (Marcel Dekker, New York, 1977) p. 1121.Google Scholar
[7] Brandle, C.D., J. Crystal Growth 57, 65 (1982).Google Scholar
[8] Langlois, W.E., J. Crystal Growth 46, 743 (1979).Google Scholar
[9] Carruthers, J.R., J. Crystal Growth 32, 13 (1976).Google Scholar
[10] Kobayashi, N., in Preparation and Properties of Solid State Materials, Vol 6, edited by Wilcox, W.R. (Marcel Dekker, New York, 1981) p. 119253.Google Scholar
[11] Miyazawa, S., Mori, Y., Homma, S., and Kitamura, K., Mater. Res. Bull. 13, 675 (1978).Google Scholar
[12] Miyazawa, S., J. Crystal Growth 49, 515 (1980).Google Scholar
[13] Miyazawa, S. and Iwasaki, H., Japan, J. Appl. Phys. 9, 441 (1970).Google Scholar
[14] Kimura, H., J. Crystal Growth 78, 19 (1986).CrossRefGoogle Scholar
[15] Nakano, J., Yamada, T., and Miyazawa, S., J. Crystal Growth 47, 693 (1979).Google Scholar
[16] Derby, J.J., Atherton, L.J., Thomas, P.D., and Brown, R.A., J. Sci. Computing 2 (4), p. 297343 (1987).Google Scholar
[17] Thomas, P.D., Derby, J.J., Atherton, L.J., Brown, R.A., and Wargo, M.J., J. Cryst. Growth (1988) submitted.Google Scholar
[18] Gresho, P.M. and Derby, J.J., J. Cryst. Growth 85, p. 4048 (1987).Google Scholar
[19] Derby, J.J., Atherton, L.J., and Gresho, P.M., J. Cryst. Growth (1988) submitted.Google Scholar
[20] Bottaro, A. and Zebib, A., Phys. Fluids 31 (3), p. 495501 (1988).Google Scholar
[21] Takagi, K., Fukazawa, T., and Ishii, M., J. Crystal Growth 32, 89 (1976).Google Scholar
[22] Carruthers, J.R., J. Crystal Growth 36, 212 (1976).Google Scholar
[23] Kobayashi, N., J. Crystal Growth 52, 425 (1981).Google Scholar
[24] Jones, A.D.W., J. Crystal Growth 69, 165 (1984).Google Scholar
[25] Kimura, H., J. Crystal Growth 78, 19 (1986).CrossRefGoogle Scholar
[26] Gartner, K.J., Rillinghaus, K.F., and Seeger, A., J. Crystal Growth 13/14, 619 (1972).Google Scholar
[27] Hurle, D.T.J., J. Crystal Growth 42, 473 (1977).Google Scholar
[28] Kyle, T.R., Zydzik, G., Mater. Res. Bull. 42, 443 (1973).CrossRefGoogle Scholar
[29] Valentino, A.J., Brandle, C.D., J. Crystal Growth 26, 1 (1974).CrossRefGoogle Scholar
[30] Reinert, R.C., Yatsko, M.A., J. Crystal Growth 21, 283 (1974).Google Scholar
[31] Menser, G., Z. Kristallagr. 63, 157158 (1926).Google Scholar
[32] Kokta, M.R., U.S. Patent No. 4711696 (1987).Google Scholar
[33] Suchow, L., Kokta, M.R., and Flynn, V.J., J. Solid State Chem., 2, 137143 (1970).Google Scholar
[34] Suchow, L. and Kokta, M.R., J. Solid State Chem., 5, 329333 (1972).Google Scholar
[35] Morozova, L.G. and Feofilov, P.P., Iev. Akad. Nank, SSSR, Neorg. Mater., 4,1738–42 (1968).Google Scholar
[36] Kokta, M.R., J. Solid State Chem., 8, 3942 (1973).Google Scholar
[37] Brandle, C.D. and Vanderleeden, J.C., IEEE J. Quant. Elec., QE–10, No. 2, 6771 (1974).Google Scholar
[38] Jones, T.P., Coble, R.L., and Mogab, G.J., J. Amer. Ceram. Soc., Vol 52, #6, 331334 (1969).Google Scholar