Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T09:03:57.943Z Has data issue: false hasContentIssue false

Czochralski Crystal Growth of Zinc Oxide-Tellurium Oxide System

Published online by Cambridge University Press:  01 February 2011

Jalal M. Nawash
Affiliation:
[email protected], Washington State University, Materials Science Program, 435 NE Kamiaken, Apt #31, Pullman, Wa, 99163, United States, 509-335-8145, 509-3354145
Kelvin G. Lynn
Affiliation:
[email protected], Washington State University, Materials Science Program, United States
Get access

Abstract

Czochralski technique was employed in an attempt to grow a single crystal of the system ZnO-TeO2. A good quality grown crystal is expected to be transparent with a very light yellow color. The crystals exhibit a high resistivity of the order of 1013 Ω-cm. Different mole percentages have been tested for growth. Several attempts were performed to pull a single crystal. It was found that the best mole percentage of ZnO-TeO2 is 35.5:64.5. The pulled material grows uniformly, such that necking and conning are noticed. The pulled material contained multiple single crystals which were isolated and studied. Each one of them was transparent. Some properties will be presented. The pulled material of the 40:60 ZnO-TeO2 mole percentage returned four phases. Two of these phases are very uncommon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Abrosimov, N.V., Riemann, H., Schroder, W., Pohl, H.-J., Kaliteevski, A. K., Godisov, O. N., Korolyov, V. A., Zhilnikov, A. J., Crys. Res. Technol. 38, No. 7–8, 654658 (2003).Google Scholar
[2] Dold, P., Crys. Res. Technol. 38, No. 7–8, 659668 (2003).Google Scholar
[3] Brandle, C.D., Journal of Crystal Growth 264, 593604 (2004).Google Scholar
[4] Kumaragurubaran, S., Krishnamurthy, D.. Subramanian, C., Ramasamy, P., Journal of Crystal growth 211, 276280 (2000).Google Scholar
[5] Fornasiero, L., Mix, E., Peters, V., Petermann, G., Huber, G., Crest. Res. Technol. 34, No. 2, 255260 (1999).Google Scholar
[6] Sankaranarayanan, K., Ramasamy, P., Journal of Crystal Growth 193, 552–256 (1998).Google Scholar
[7] Abrosimov, N.V., Ludge, A., Riemann, H., Kurlov, V. N., Borissova, D., Klemm, V., Hallion, H., Ballmoos, P. V., Bastie, P. V., Hamelin, B., Smither, R. K., Journal of Crystal Growth 278, e495-e500 (2005).Google Scholar
[8] Chen, J.L., Zhao, G. H., Gao, S. X., Zhan, W. S., Li, Y. X., Qu, J. P., Xu, G. Z., Journal of Crystal Growth 222, 779785 (2001).Google Scholar
[9] Liu, X., Wu, X., Cao, H., Chang, R. P. H.., Journal of Applied Physics 95, No. 6, 31413147 (2004).Google Scholar
[10] Kumaragurubaran, S., Krishnamurthy, D., Subramanian, C., Ramasamy, P., Journal of Crystal Growth 197, 210215 (1999).Google Scholar
[11] Lukasiewicz, T., Majchrowski, A., Journal of Crystal Growth 116, 346368 (1992).Google Scholar
[12] Grabmaier, J.G., Plattner, R.D., Schieber, M., Journal of Crystal Growth 20, 8288 (1973).Google Scholar
[13] Marinov, M.R., Kozhouharov, V. S., Comptes rendus de l'Academei bulgare des Sciences 25, No 3, (1972).Google Scholar
[14] Nukui, A., Taniguchi, T., Miyata, M., Journal of Non-Crystalline Solids 293–295 (2001) 255260.Google Scholar
[15] Bürger, H., Hobert, K., Vogel, W., Journal of Non-Crystalline Solids 151, 134142 (1992).Google Scholar
[16] Öveçoĝlu, M. L., Özalp, M. R., Özen, G., Alten, F., Kalem, V.., Key Engineering Materials 264–268, 18911894 (2004).Google Scholar
[17] Jones, A. D. W., Journal of Crystal Growth 63, issue 1, 7076 (1983).Google Scholar