No CrossRef data available.
Article contents
CVM Simulation of the Resistivity in L10 and L12 Co-Pt Intermetallic Compounds
Published online by Cambridge University Press: 26 February 2011
Abstract
The contributions of the atomic and spin disorder to the resistivity of two intermetallic Co1−x Ptx (x=0.5 and 0.7) compounds have been previously determined from experimental studies and separated from the phonon contribution. Now, the atomic and magnetic contributions and their variation with temperature through the Curie and order-disorder transitions are analyzed using a statistical model. The components of the resistivity are described as sums of resistivities of individual tetrahedral clusters. The cluster probabilities are calculated in a magnetic (up and down spin model) CVM approximation, the parameters of which are those that reproduce the experimental Co-Pt phase diagram. The contribution of chemically (magnetically) ordered clusters to the resistivity due to the chemical (magnetic) disorder are taken equal to zero. It is the temperature dependence of all other cluster probabilities which determine the resistivity behavior. Although there are severe approximations in both the experimental analysis and the statistical model, the agreement between theory and experiment is very satisfactory, underscoring the strong interplay between chemical and magnetic order in such ferromagnetic compounds.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1991