Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:40:55.287Z Has data issue: false hasContentIssue false

CVD Precursors Containing Hydropyridine Ligands

Published online by Cambridge University Press:  15 February 2011

Roy G. Gordon
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138.
John Thornton
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138.
Feng Chen
Affiliation:
Department of Chemistry, Harvard University, Cambridge, MA 02138.
Get access

Abstract

Hydropyridine is introduced as a new ligand for use in constructing precursors for chemical vapor deposition. Detachment of hydropyridine occurs by a low-temperature reaction leaving hydrogen in place of the hydropyridine, and a very stable byproduct, pyridine vapor. Hydropyridine ligands can be attached to a variety of elements, including main group metals, such as aluminum and antimony, transition metals, such as titanium and tantalum, semiconductors such as silicon, and nonmetals such as phosphorus and arsenic.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 De Koning, A. J., Boersma, J. and M van der Kerk, G. J., J. Organometallic Chem. 186, 159(1980).Google Scholar
2 Wiberg, Egon and Gosele, Wilhelm, Z. Naturforschung B 10, 236 (1955).Google Scholar
3 Lansbury, Peter J. and Peterson, James O., J. Am. Chem. Soc. 85, 2236 (1963);Google Scholar
Tanner, Douglas D. and Yang, Chi-Ming, J. Org. Chem. 58, 1940 (1993).Google Scholar
4 Fix, R. M., Gordon, R. G. and Hoffman, D. M., Materials Research Society Symposium Proceedings: Chemical Vapor Deposition of Refractory Metals and Ceramics 168, 357 (1990).Google Scholar
5 Fix, R., Gordon, R. G. and Hoffman, D. M., Chem. Mater. 3, 1138 (1991).Google Scholar
6 Fix, R., Gordon, R. G. and Hoffman, D. M., Chem. Mater. 5, 614 (1993).10.1021/cm00029a007Google Scholar
7 Gordon, R. G., Hoffman, D. M. and Riaz, U., J. Mater. Res. 6, 5 (1991).10.1557/JMR.1991.0005Google Scholar
8 Gordon, R. G., Hoffman, D. M. and Riaz, U., Materials Res. Soc. Symp. Proceedings 242, 445 (1992).Google Scholar
9 Gordon, R. G., Hoffman, D. M. and Riaz, U., Chem. Mater. 2, 480 (1990).Google Scholar
10 Gordon, R. G., Hoffman, D. M. and Riaz, U., Chem. Mater. 4, 68 (1991).Google Scholar
11 Atagi, L. M., Hoffman, D. M., Liu, J-R., Zheng, Z., Chu, W-K., Rubiano, R. R., Springer, R. W. and Smith, D. C., Chem. Mater. 6, 360 (1994).Google Scholar
12 Xi, M., Sateria, S., Jensen, K. F. and Bohling, D. A., Materials Res. Soc. Symp. Proceedings 334, 169 (1994).10.1557/PROC-334-169Google Scholar
13 Tadachika, H. and Suemune, I., Jpn. J. Appl. Phys., Part 1 33, 3500 (1994).Google Scholar