Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T01:18:43.615Z Has data issue: false hasContentIssue false

Current Status of Mo-Si-B Silicide Alloys for Ultra-high Temperature Applications

Published online by Cambridge University Press:  01 February 2011

Martin Heilmaier
Affiliation:
[email protected]@yahoo.com, TU Darmstadt, Materials Science, Darmstadt, Germany
Holger Saage
Affiliation:
holger.saage@ovgude, Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, Magdeburg, Germany
Manja Krüger
Affiliation:
[email protected], Otto-von-Guericke University Magdeburg, Institute for Materials and Joining Technology, Magdeburg, Germany
Pascal Jehanno
Affiliation:
[email protected], Plansee SE, Technology Centre, Reutte, Austria
Mike Böning
Affiliation:
[email protected], Plansee SE, Technology Centre, Reutte, Austria
Heinrich Kestler
Affiliation:
[email protected], Plansee SE, Technology Centre, Reutte, Austria
Get access

Abstract

We review the current development status of molybdenum borosilicide (Mo-Si-B) alloys for ultra-high temperature applications in air. The assessment of several ingot and powder metallurgy approaches revealed that (i) the presence of a continuous Mo solid solution matrix is mandatory for adequate low temperature toughness and (ii) wrought processing of such alloys at temperatures established for refractory metals requires the presence of an ultrafine (sub-micron) microstructure. Both prerequisites could be fulfilled using mechanical alloying (MA) as the crucial processing step , however, values for the ductile-to-brittle transition temperature (DBTT) below 800°C could not be obtained due to grain boundary embrittlement by Si segregation. First results on the effect of different microalloying additions on a reduction of this segregation exemplified for the Mo solid solution will be presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimiduk, D.M. and Perepezko, J.H.: MRS Bulletin 28, 639 (2003).Google Scholar
2. Nicholls, J.R., MRS Bulletin 28, 659 (2003).Google Scholar
3. Yamabe-Mitarai, Y., Gu, Y., Huang, C., Völkl, R., and Harada, H., JOM 56, 34 (2004).Google Scholar
4. Bewlay, B.P., Jackson, M.R., Zhao, J.-C., Subramanian, P.R., Mendiratta, M.G., and Lewandowski, J.J., MRS Bulletin 28, 646 (2003).Google Scholar
5. Berczik, D.M., US Patent 5, 595, 616 (1997).Google Scholar
6. Jéhanno, P., Heilmaier, M., Kestler, H., Böning, M., Venskutonis, A., Bewlay, B., and Jackson, M., Metall. Mater. Trans. 36A, 515 (2005).Google Scholar
7. Krüger, M., Franz, S., Saage, H., Heilmaier, M., Schneibel, J.H., Jéhanno, P., Böning, M., and Kestler, H., Intermetallics 16, 933 (2008).Google Scholar
8. Perepezko, J.H., Sakidja, R., and Kim, S., in (Mat. Res. Soc. Proc. 646, Pittsburgh, PA, 2001) pp. N4.5.1.Google Scholar
9. Suryanarayana, C., Prog. Mater. Sci. 46, 1 (2001).Google Scholar
10. Sturm, D., Heilmaier, M., Schneibel, J. H., Jéhanno, P., Skrotzki, B., and Saage, H., Mater. Sci. Eng. A463, 107 (2007).Google Scholar
11. Guha, A., in Metals Handbook, 9th edition, vol. 8, Mechanical Testing and Evaluation (American Society for Metals, 1985) pp. 132136.Google Scholar
12. Mendiratta, M., Parthasarathy, T.A., and Dimiduk, D.M., Intermetallics 10, 225 (2002).Google Scholar
13. Parthasarathy, T.A., Mendiratta, M., and Dimiduk, D.M., Acta Mater. 50, 1857 (2002).Google Scholar
14. Jéhanno, P., Heilmaier, M., and Kestler, H., Intermetallics 12, 1005 (2004).Google Scholar
15. Kruzic, J.J., Schneibel, J.H., and Ritchie, R.O., Metall. Mater. Trans. 36A, 2393 (2005).Google Scholar
16. Pineau, A., Acta Metall. 24, 559 (1976).Google Scholar
17. Caron, P. and Khan, T., Mater. Sci. Eng. 61, 173 (1983).Google Scholar
18. Mughrabi, H., Ott, M., and Tetzlaff, U., Mater. Sci. Eng. A234–236, 434 (1997).Google Scholar
19. Jéhanno, P., Heilmaier, M., Saage, H., Heyse, H., Böning, M., Kestler, H., and Schneibel, J., Scripta Mater. 55, 525 (2006).Google Scholar
20. Jéhanno, P., Heilmaier, M., Saage, H., Böning, M., Kestler, H., Freudenberger, J., and Drawin, S., Mater. Sci. Eng. A463, 216 (2007).Google Scholar
21. Reed, R.C., Cox, D.C., and Rae, C.M.F., Mater. Sci. Eng. A448, 88 (2007).Google Scholar
22. Jéhanno, P., Heilmaier, M., and Kestler, H., European Patent EP 1 718 777 B1 (2006).Google Scholar
23. Woodard, S., Raban, R., Myers, J.F., and Berczik, D.M., US Patent 6, 652, 674 (2003).Google Scholar
24. Li, M.H., Sun, X.F., Jin, T., Guan, H.R., and Hu, Z.Q., Oxid. Met. 60, 195 (2003).Google Scholar
25. Nomura, N., Suzuki, T., Yoshimi, K., Hanada, S., Intermetallics 11, 735 (2003).Google Scholar
26. Disam, J., Martinz, H.-P., and Sulik, M., Austrian Patent AT001251 (1996).Google Scholar
27. Ito, K., Itahara, K., Tanaka, K., Fujikura, M., Yamaguchi, M., Intermetallics 9, 591 (2001).Google Scholar
28. Rosales, I. and Schneibel, J.H., Intermetallics 8, 885 (2000).Google Scholar
29. Northcott, L., Molybdenum (Academic Press Inc., New York, 1956).Google Scholar
30. Sherby, O.D. and Wadsworth, J., Prog. Mater. Sci. 33, 169 (1989).Google Scholar
31. Geller, C.B., Smith, R.W., Hack, J.E., Saxe, P., and Wimmer, E., Scripta Mater. 52, 205 (2005).Google Scholar
32. Schneibel, J.H., Ritchie, R.O., Kruzic, J.J., and Tortorelli, P.F., Metall. Mater. Trans. 36A, 525 (2005).Google Scholar
33. Miller, M. K. and Bryhan, A.J., Mater. Sci. Eng. A327, 80 (2002).Google Scholar