Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:38:22.856Z Has data issue: false hasContentIssue false

Cu-Nanoclusters Produced on AuCu-Alloys with an Electrochemical Scanning Tunneling Microscope

Published online by Cambridge University Press:  17 March 2011

S. Maupai
Affiliation:
University of Erlangen-Nuremberg, Department of Materials Science, Chair for Surface Science and Corrosion (LKO), Martensstraße 7, D-91058 Erlangen, Germany
A.S. Dakkouri
Affiliation:
University of Erlangen-Nuremberg, Department of Materials Science, Chair for Surface Science and Corrosion (LKO), Martensstraße 7, D-91058 Erlangen, Germany
M. Stratmann
Affiliation:
Max Planck Institute for Iron Research, Department of Interface chemistry and Surface Engineering, Max Planck Str. 1, D-40237 Düsseldorf, Germany
P. Schmuki
Affiliation:
University of Erlangen-Nuremberg, Department of Materials Science, Chair for Surface Science and Corrosion (LKO), Martensstraße 7, D-91058 Erlangen, Germany
Get access

Abstract

Cu-nanoclusters can be produced in an electrochemical environment by tip-induced metal deposition using an electrochemical scanning tunneling microscope (EC-STM). These clusters, consisting of 100-1000 atoms only, show a surprising stability against anodic oxidation. The clusters, which are 2-3 atomic layers in height dissolve slowly when the applied potential is increased step by step to 200 mV positive of the reversible Nernst potential for “normal” copper dissolution. The presented work gives evidence that the unusual stability of the clusters could be a consequence of interfacial alloying between the cluster and the underlying substrate. In order to study these effects Cu-nanoclusters have been produced on pure gold substrates and on carefully prepared Au3Cu(111)-substrates. This work compares the results obtained on both substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, W., Virtanen, J.A. and Penner, M., Appl. Phys. Lett. 60, 1181 (1992)Google Scholar
2. Zoval, J.V., Stiger, R.M., Biernacki, P.R. and Penner, R.M., J. Phys. Chem. 100, 837 (1996)Google Scholar
3. Ullmann, R., Will, T. and Kolb, D.M., Chem. Phys. Lett. 209, 3 (1993)Google Scholar
4. Ullmann, R., Will, T. and Kolb, D.M., Ber. Bunsenges. Phys. Chem. 99, 11, 1414 (1995)Google Scholar
5. Schuster, R., Kirchner, V., Xia, X.H., Bittner, A.M. and Ertl, G., Phys. Rev. Lett. 80, 5599 (1998)Google Scholar
6. Naohara, H., Ye, S. and Uosaki, K., Appl. Phys. Lett. 66, S457 (1998)Google Scholar
7. Hoffmann, D., Schindler, W. and Kirschner, J., Appl. Phys. Lett. 73, 3279 (1998)Google Scholar
8. Pötzschke, R.T., Staikov, G., Lorenz, W.J. and Wiesbeck, W., J. Electrochem soc., 146, 141 (1999)Google Scholar
9. Kolb, D.M., Ullmann, R. and Will, T., Science 275, 1097 (1997)Google Scholar
10. Engelmann, G.E., Zieglerand, J.C. Kolb, D.M., Surf. Sci. 401, L420 (1998)Google Scholar
11. Engelmann, G.E., Ziegler, J.C. and Kolb, D.M., J. Electrochem. Soc. 145, 3, L33 (1998)Google Scholar
12. Kolb, D.M., Ullmann, R. and Ziegler, J.C., Electrochim. Act. 43, 19-20, 2751 (1998)Google Scholar
13. Ziegler, J.C., Engelmann, G.E. and Kolb, D.M., Zeitschr. Phys. Chem. 208, 151 (1999)Google Scholar
14. Kolb, D.M., Engelmann, G.A. and Ziegler, J.C., Angew. Chem. 39, 6, 1123 (2000)Google Scholar
15. Maupai, S., Stratmann, M., Dakkouri, A.S., Electrochem. Sol. State Lett. (2001) submittedGoogle Scholar
16. Eckstein, G.A., Maupai, S., Dakkouri, A.S., Stratmann, M., Nielsen, M., Nielsen, M.M., Feidenhans'l, R., Zeysing, J.H., Bunk, O., Johnson, R.L., Phys. Rev. B, 60 8321 (1999)Google Scholar
17. Randler, R.J., Kolb, D.M., Ocko, B.M, Robinson, I.K., Surf. Sci., 447 187 (2000)Google Scholar