Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T01:42:58.793Z Has data issue: false hasContentIssue false

Crystallographic Texture Characterization of Inlaid Copper Interconnects

Published online by Cambridge University Press:  21 March 2011

Inka Zienert
Affiliation:
Materials Analysis Department, AMD Saxony Manufacturing Dresden, Germany
Paul Besser
Affiliation:
Technology Development Group, Advanced Micro Devices, Sunnyvale, CA, USA
Werner Blum
Affiliation:
Materials Analysis Department, AMD Saxony Manufacturing Dresden, Germany
Ehrenfried Zschech
Affiliation:
Materials Analysis Department, AMD Saxony Manufacturing Dresden, Germany
Get access

Extract

Developing faster integrated circuits places incredible demands on the interconnect system. The smaller feature sizes lead to excessive current densities, which in turn make the interconnect lines more susceptible to electromigration (EM) failure.[1] Studies have shown that EM performance can be improved by increasing the strength of the {111} texture in conventionally- fabricated aluminum-based lines.[2-6] The strong {111} texture minimizes the presence of high- angle grain boundaries along the interconnect line, thus minimizing a fast-diffusion path for EM mass transport.[2-4,7-12]

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kwok, T., Metallization: Performance and reliability Issues for VLSI and ULSI, Vol. 1596, 6071 (1991)Google Scholar
2. Vaidya, S. and Sinha, A.K., Thin Solid Films, Vol. 75, 1981, p. 253.Google Scholar
3. Campbell, A.N., Mikawa, R.E., and Knorr, D.B., J. Electron. Mater. Vol. 22, 589 (1993).Google Scholar
4. Toyoda, H., Kawanoue, T., Hasunuma, M., Kaneko, H., and Miyauchi, M., IEEE International Reliability Phys. Symp Proc, 178 (1994).Google Scholar
5. Kageyama, M., Abe, K., Harada, Y. and Onoda, H., Mater. Res. Soc., 91 (1998)Google Scholar
6. Gross, M.E.et al., Mat. Res. Soc. Symp. Proc Vol. 514, 293 (1998)Google Scholar
7. Rodbell, K.P, Hurd, J.L., and DeHaven, P.W., Mat. Res. Soc. Symp. Proc Vol. 403, 617 (1996).Google Scholar
8. Knorr, D.B., Tracy, D.P, and Rodbell, K.P., Applied Physics Letters 59, 3241 (1991).Google Scholar
9. Knorr, D.B., Rodbell, K.P, Journal of Applied Physics 79, 2409 (1996).Google Scholar
10. Abe, K., , Y.Harada, and Onoda, H., 36th Annual Reliability Physics Symposium, 342 (1998).Google Scholar
11. Kageyama, M., , K.Abe, Harada, Y., and Onoda, H., Mat. Res. Soc. Symp. Proc Vol. 514, 91 (1998).Google Scholar
12. Ryu, C., Loke, A.L.S., Nogami, T., and Wong, S., Proc. of the IEEE Int.Rel. Physics Symp, 201 (1997).Google Scholar
13. Zhang, X., , H.Solak, Cerrina, F., Lai, B., Cai, Z., , P.Ilinski, Legnini, D. and Rodrigues, W., Appl. Phys. Lett., 76(3) 315 (2000)Google Scholar
14. Beruschi, P., , C.Ciofo, Dattilo, V., , A.Diligenti, Nannini, A. and Neri, B., J. Electron Mater., 26(8) L17–L20 (1997)Google Scholar
15. Zielinski, E.M., Vinci, R.P. and Bravman, J.C., J. Electron Mater., 24(10) 1485 (1995).Google Scholar
16. Harper, J.M.E. and Rodbell, K.P., J.Vac. Sci. Technol. B 15(4), 763 (1997).Google Scholar
17. Vanasupa, L., Joo, Y. C., Besser, P. R., , S.Pramanick, Journal of Applied Physics 85(5) 2583 (1999).Google Scholar
18. Besser, P. R.et al., “Microstructural characterization of inlaid Cu inteconnect lines,” To be published in J. Electronic Mater. (April 2001).Google Scholar
19. Lingk, C., Gross, M. E., Brown, W. L., , T.Siegrist, Coleman, E., Lai, W. Y. C., Miner, J. F., , T.Ritzdorf, Turner, J., , J.Gibbons, Klawuhn, E., , G.Wu, Zhang, F., Proc. AMC Conf, 73 (1998).Google Scholar
20. Lingk, C., Gross, M. E., Brown, W. L., Applied Physics Letters 74(5) (1999).Google Scholar
21. Dominguez, J., Microstructure evolution of electrodeposited copper films and damscene trenches. Masters' Thesis at University of Michigan (2000).Google Scholar
22. Besser, P.R., Marathe, A., , L.Zhao, Herrick, M., , C.Capasso, and Kawasaki, H., IEEE Int. Electron Devices Meeting Digest, 119 (2000).Google Scholar
23. Hu, C.K., Malhotra, S.G, and Gignac, L., Electrochemical Soc. Proceedings Vol. 99–31, 206 (1999).Google Scholar
24. Rathore, H.S., Nguyen, D.B, Agarwala, B., Wachnik, R.A., and Procter, R.W., Electorchemical Soc. Proceedings Vol. 99–31, 190 (1999).Google Scholar
25. Proost, J., Hirato, T., Furuhara, T., , K.Maex, and Cells, J.-P., J. Appl. Phys. 87(6) 2792 (2000).Google Scholar
26. McBrayer, J.D., Swanson, R.M. and Sigmon, T.W., J. Electrochem. Soc., Vol. 133, 1242 (1986).Google Scholar
27. Kawasaki, H., Short Course on Reliability characterization methods for VLSI interconnects, SSDM, (1999).Google Scholar
28. Besser, P. R., Sanchez, J. E., Field, D., Pramanick, S., Sahota, K., Mat. Res. Soc. Symp. Proc. 473, 217 (1997).Google Scholar
29. Besser, P. R., Sanchez, J. E., Field, D. P, Proc. Advanced Metallization and Interconnect Systems for ULSI Applications 1996, 89 (1997).Google Scholar
30. Vanasupa, L.et al., Electro. and Solid-State Letters, 2 (6), 275 (1999).Google Scholar
31. Gross, M.E., Lingk, C., Brown, W.L. and Drese, R., Solid State Technol., 47 (1999).Google Scholar
32. Tracy, D.P., Knorr, D.B. and Rodbell, K.P., J. Appl. Phys. 76, 2671 (1994).Google Scholar
33. Harper, J.M.E. and Rodbell, K.P., J. Vac. Sci. Technol.B, Vol. 15, 763 (1997).Google Scholar
34. Zschech, E., Blum, W., , I.Zienert, Besser, P. R., Submitted to Zeitschr. f. Metallkunde (2001).Google Scholar
35. Sanchez, J. E., Besser, P. R., Proc. IITC, 233 (1998).Google Scholar
36. Zienert, I., Blum, W., Zschech, E., Ullrich, H.-J. and Besser, P., Proc. Materials for Adv. Metal. Conf. (2001)Google Scholar