Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:13:39.114Z Has data issue: false hasContentIssue false

Crystallographic Analysis of (110)CeO2/(100)Si Using RBS/Channeling Technique

Published online by Cambridge University Press:  15 February 2011

Masataka Satoh
Affiliation:
Research Center of Ion Beam Technology. Hosei University, Koganei, Tokyo 184, Japan
Yasuhiro Yamamoto
Affiliation:
Research Center of Ion Beam Technology. Hosei University, Koganei, Tokyo 184, Japan
Shigeyuki Nakajima
Affiliation:
Research Center of Ion Beam Technology. Hosei University, Koganei, Tokyo 184, Japan
Yoshinobu Sakurai
Affiliation:
Research Center of Ion Beam Technology. Hosei University, Koganei, Tokyo 184, Japan
Tomoyasu Inoue
Affiliation:
College of Science and Engineering. Iwaki Meisei University, Iwaki, Fukushima 970, Japan
Tetsu Ohsuna
Affiliation:
College of Science and Engineering. Iwaki Meisei University, Iwaki, Fukushima 970, Japan
Get access

Abstract

Epitaxially grown CeO2 layers on (100)Si substrates are studied using the RBS/channeling technique. The crystallographic correlation between the overgrown layers and off-oriented Si substrates is precisely analyzed by means of constructing stereographic projections obtained from the planar channeling dips. From the stereographic projections for the CeO2 layer on the 4° off-oriented Si substrate, it is clearly seen not only that the epitaxial (110)CeO2 layer is single crystal with the direction defined as [001]CeO2 ║ [011]Si, but also that the crystalline quality of (110)CeO2 on (100)Si can be improved by use of the off-oriented substrate. The inclined epitaxial direction is also detected as the depth information.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, T., Yamamoto, Y., Koyama, S., Suzuki, S., and Ueda, Y., Appl. Phys. Letters 56, 1332 (1990).CrossRefGoogle Scholar
2. Inoue, T.. Osonoc, M., Tohda, H.. Hiramatsu, M., Yamamoto, Y., Yamanaka, A.., and Nakayama, T.. J. Appl. Phys. 69, 8313 (1991).CrossRefGoogle Scholar
3. Inoue, T., Ohsuna, T., Luo, L., Wu, X. D., Maggiore, C. J., Yamamoto, Y., Sakurai, Y. and Chang, J. H., Appl. Phys. Lett. 59, 3604 (1991).CrossRefGoogle Scholar
4. Inoue, T., Ohsuna, T., Yamamoto, Y., Sakurai, Y., Luo, L., Wu, X. D., Maggiore, C. J., Mater. Res. Soc. Symp. Proc. 237. 589 (1992).CrossRefGoogle Scholar
5. Yoshimoto, M., Nagata, H., Tsukahara, T., and Koinuma, H., Jpn. J. Appl. Phys. 29, L1199 (1990).CrossRefGoogle Scholar
6. Nagata, H., Tsukahara, T., Gonda, S., Yoshimoto, M., and Koinuma, H., Jpn. J. Appl. Phys. 30, L1136 (1991).CrossRefGoogle Scholar
7. Luo, L.. Wu, X. D., Dye, R. C., Muenchausen, R. E., Folton, S. R., Coulter, Y., Maggiore, C. J., and Inoue, T.. Appl. Phys. Letters 59, 2043 (1991).CrossRefGoogle Scholar
8. Inoue, T., Ohsuna, T.. Yamada, Y.. Wakamatsu, K., Itoh, Y., Nozawa, T., Sasaki, E., Yamamoto, Y., and Sakurai, Y., Jpn. J. Appl. Phys. 31, L1736 (1992).CrossRefGoogle Scholar
9. Yamamoto, Y., Satoh, M.. Sakurai, Y., Nakajima, S., Inoue, T., and Ohsuna, T., Jpn. J. Appl. Phys. (in press).Google Scholar
10. Chu, W.K., Mayer, J.W. and Nicolet, M-A., Backsattering Spectrometry (Academic Press, New York, 1978).Google Scholar
11. Chadi, D.J.. Phys. Rev. Lett. 59, 1691 (1987).CrossRefGoogle Scholar