Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:40:11.714Z Has data issue: false hasContentIssue false

Crystallization of Silicon Films on Glass: A Comparison of Methods

Published online by Cambridge University Press:  15 February 2011

Ross A. Lemons
Affiliation:
*Los Alamos National Laboratory, MS D429, Los Alamos, NM 87545
Martin A. Bosch
Affiliation:
*Los Alamos National Laboratory, MS D429, Los Alamos, NM 87545
Dieter Herbst
Affiliation:
**Bell Laboratories, Holmdel, NJ 07733
Get access

Abstract

The lure of flat panel displays has stimulated much research on the crystallization of silicon films deposited on large-area transparent substrates. In most respects, fused quartz is ideal. It has high purity, thermal shock resistance, and a softening point above the silicon melting temperature. Unfortunately, fused quartz has such a small thermal expansion that the silicon film cracks as it cools. This problem has been attacked by patterning with islands or moats before and after crystallization, by capping, and by using silicate glass substrates that match the thermal expansion of silicon. The relative merits of these methods are compared. Melting of the silicon film to achieve high mobility has been accomplished by a variety of methods including lasers, electron beams, and strip heaters. For low melting temperature glasses, surface heating with a laser or electron beam is essential. Larger grains are obtained with the high bias temperature, strip heater techniques The low-angle grain boundaries characteristic of these films may be caused by constitutional undercooling. A model is developed to predict the boundary spacing as a function of scan rate and temperature gradient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Research performed by the authors was done at Bell Laboratories, Holmdel, NJ.

References

REFERENCES

1.Weimer, P.K., Proc. IRE 49, 1462 (1962).Google Scholar
2.Brody, T.B., Luo, F.C., Szepetti, Z.P., and Davies, D.H., IEEE Trans. Electron Devices ED–22, 739 (1975).Google Scholar
3.LeComber, P.G., Spear, W.E., and Ghaith, A., Electron. Lett. 15 179 (1979).Google Scholar
4.Hayama, H. and Matsumura, M., Appl. Phys. Lett. 36, 754 (1980).Google Scholar
5.Matsumura, M. and Yasuo, N., J. Appl. Phys. 51, 6443 (1980).Google Scholar
6.Thompson, M.J., Johnson, N.M., Moyer, M.D., and Lujan, R., Program 39th Annual Device Research Conf.VIA–8(1981).Google Scholar
7.Matsui, M., Shiraki, Y., Katayama, Y., Kobayashi, K.L.I., Shintani, A., and Maruyama, E., Appl. Phys. Lett. 37, 936 (1980).Google Scholar
8.Depp, S.W., Juliana, A., and Huth, B.G., Proc. 1980 International Electron Devices Meeting, IEEE Cat. CH1616–2/80, 703 (1980).Google Scholar
9.Auvert, G., Bensahel, D., Georges, A., Nguyen, V.T., Henoc, P., Morin, F., and Coissard, P., Appl. Phys. Lett. 38 613 (1981).Google Scholar
10.Geis, M.W., Antoniadis, D.A., Silversmith, D.J., Mountain, R.W., and Smith, H.I., Appl. Phys. Lett. 37 454 (1980).Google Scholar
11.Celler, G.K. and Robinson, Mc.D., Laser-Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W.L., and Lemons, R.A., Eds., (Elsevier North Holland New York, 1983), this volume.Google Scholar
12.Kamgar, A. and Rozgonyi, G.A., ibid.Google Scholar
13.Stultz, T.J., Sturm, J., and Gibbons, J.F., ibid.Google Scholar
14.Maby, E.W., Geis, M.W., Lecoz, Y.L., Silversmith, D.J., Mountain, R.W., and Antoniadis, D.A., Elect. Device Lett. EDL–2 241 (1981).Google Scholar
15.Tsaur, B.Y., Fan, J.C.C., and Geis, M.W., Appl. Phys. Lett. 40, 322 (1982).Google Scholar
16.Herbst, D., Bosch, M.A., Lemons, R.A., Tewksbury, S.K., and Harrison, T.R., “PMOS Transistors Fabricated in Large Area Laser Crystallized si on Silica,” Elect. Lett., in press (1983).Google Scholar
17.Bosch, M.A. and Lemons, R.A., Electronic Materials Conference (Fort Collins, Colorado, 1982).Google Scholar
18.Kamins, T.I. and Pianetta, P.A., IEEE Elect. Devices Lett. EDL–l, 214 (1980).Google Scholar
19.Biegelsen, D.K., Johnson, N.M., Bartelink, D.J., and Moyer, M.D., Laser and Electron-Beam Solid Interactions and Materials Processing, Gibbons, J.F., Hess, L.D., and Sigmon, T.W., Eds. (Elsevier North Holland, 1982), 487.Google Scholar
20.Hawkins, W.G., Black, J.B., and Griffiths, C.H., Appl. Phys. Lett. 40, 319 (1980).Google Scholar
21.Johnson, N.M., Tuan, H.C., Moyer, M.D., Thompson, M.J., Biegelsen, D.K., Fennell, L.E., and Chiang, A., Laser-Solid Interactions and Transient Thermal Processing of Materials, Narayan, J., Brown, W.L., and Lemons, R.A., Eds., (Elsevier North Holland, 1983), this volume.Google Scholar
22.Lemons, R.A. and Bosch, M.A., Appl. Phys. Lett. 40, 703 (1982).Google Scholar
23.Geis, M.W., Smith, H.I., Tsaur, B.Y., Fan, J.C.C., Silversmith, D.J., and Mountain, R.W., J. Electrochem. Soc. 129, 2812 (1982).Google Scholar
24.Lemons, R.A., Bosch, M.A., Leamy, H.J., and Cheng, J., Electronic Materials Conference (Fort Collins, Colorado, 1982).Google Scholar
25.Bardsley, W., Boulton, J.S., and Hurle, D.T.J., Solid-State Electron. 5, 395 (1962).Google Scholar
26.Holmes, D.E. and Gatos, H.C., J. Appl. Phys. 52, 2971 (1981).Google Scholar
27.Wolf, H.F., Semiconductor Data, (Pergamon, Oxford, 1969).Google Scholar
28.Winegard, W.C., An Introduction to the Solidification of Metals, (The Institute of Metals, London, 1964).Google Scholar