Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:18:21.775Z Has data issue: false hasContentIssue false

Crystallization Of Amorphous Tungsten Disilicide. Stacking Faults And Resistivity

Published online by Cambridge University Press:  26 February 2011

F. K. LeGoues
Affiliation:
IBM T.J. Watson Research Center, PO 218, Yorktown Heights, N.Y.10598
F. M. d'Heurle
Affiliation:
IBM T.J. Watson Research Center, PO 218, Yorktown Heights, N.Y.10598
R. Joshi
Affiliation:
IBM T.J. Watson Research Center, PO 218, Yorktown Heights, N.Y.10598
Ilka Suni
Affiliation:
Technical Research Center of Finland, Semiconductor Laboratory, Otakaari 7B, SF-02150, Espoo, Finland
Get access

Abstract

Films of WSi, have been investigated by electron microscopy after annealing at different temperatures. It is shown that films annealed at 550°C contain a high density of stacking faults. The crystalline identity of these stacking faults has been established. Undoubtedly the high density of stacking faults is the cause of the resistivity maximum observed in films annealed at 550°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Angilello, J., Baglin, J. E., Cardone, F., Dempsey, J., d'Heurle, F. M., Irene, E. A., Maclnnes, R., Petersson, C. S., Savoy, R., Segmuller, A. P. and Tierney, E., J. Electron. Mater. 10, 59 (1981).Google Scholar
2 Kemper, M. J. H. and Oosting, P. H., J. Appl. Phys. 53, 6214 (1982).Google Scholar
3 d'Heurle, F. M., in “VLSI Science and Technology/1982Dell'Oca, C. and Bullis, W. M. eds. (The Electrochemical Society, Pennington, NJ, 1982), p. 194 Google Scholar
4 Tsai, M. Y., Petersson, C. S., d'Heurle, F. M. and Maniscalco, V., Appl. Phys. Lett. 37, 295 (1980).Google Scholar
5 Tsaur, B. Y. in “Thin Film Interfaces and InteractionsBaglin, J. E. and Poate, J. eds. (Electrochemical Society, Pennington, NJ, 1980) p. 205.Google Scholar
6 d'Heurle, F. M. in “VLSI Science and Technology, 1982Dell'Oca, C. and Bullis, M. eds. (Electrochemical Society, Pennington, NJ. 1982) p. 194.Google Scholar
7 Murarka, S. P., Read, M., and Chang, C. C., J. Appl. Phys. 52, 7450 (1981).Google Scholar
8 d'Heurle, F. M., Petersson, C. S. and Tsai, M. Y., J. Appl. Phys. 51, 5976 (1980).Google Scholar
9 Standard Diffraction Powder Pattern #6–0681.Google Scholar
10 Standard Diffraction Powder Pattern #17–917.Google Scholar
11 d'Heurle, F. M., LeGoues, F. K., Joshi, R. and Suni, I., accepted by Appl. Phys. Lett.Google Scholar
12 Standard Diffraction Powder Pattern #11 –195Google Scholar
13 Martin, T. L., Malhotra, V. and Mahan, J. E., J. Electron. Mat. 13, 309 (1984).Google Scholar
14 Bhattacharyya, B. K., Bylander, D.M. and Kleinman, L., Phys. Rev. B31, 2049 (1985).Google Scholar
15 Bhattacharyya, B. K., Bylander, D. M. and Kleinman, L., Phys. Rev. B31, 5462 (1985).Google Scholar
16 d'Heurle, F. M., LeGoues, F. K. and Suni, I., unpublished.Google Scholar
17 Tien, T.T., Ottaviani, G. and Tu, K.N., J. Appl. Phys. 54, 7047 (1984).Google Scholar
18 Nava, F., Ottaviani, G. and Riontino, G., Mater. Lett. 3, 311 (1985).Google Scholar
19 Nicolct, M.-A. and Lau, S. S. in “VLSI Electronics, Microstructurc ScienceEinspruch, N. and Larrabee, G. eds. (Academic Press, NY, 1983) p. 445.Google Scholar
20 Wells, A. F., “Structural Inorganic Chemistry” (Clarendon Press, Oxford, 1962) p. 771.Google Scholar
21 Mayadas, A. and Schatzkes, M., Phys. Rev. Bl, 1832 (1970).Google Scholar
22 Lee, P. A. and Ramakrishnan, T. V., Rev. Mod. Phys. 57, 287 (1985).Google Scholar