Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T10:20:45.696Z Has data issue: false hasContentIssue false

Crystallization of Amorphous Si In Al/Si Multilayers

Published online by Cambridge University Press:  15 February 2011

Toyohiko J. Konno
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Robert Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305
Get access

Abstract

The crystallization of amorphous Si in a Al/Si multilayer (with a modulation length of about 120Å) was investigated using transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. Amorphous Si was found to crystallize at about 175 °C with the heat of reaction of 11±2(kJ/mol). Al grains grow prior to the nucleation of crystalline Si. The crystalline Si was found to nucleate within the grown Al layers. The incipient crystalline Si initially grows within the Al layer and then spreads through the amorphous Si and other Al layers. Because of extensive intermixing, the original layered structure is destroyed. The Al(111) texture is also enhanced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuwano, Y. and Ohnishi, M., JARECT, ed.Hamakawa, Y., Ohmsha and North-Holland Publishing Co., 6 “Amorphous Semiconductor Technologies & Devices” (1983) 204 Google Scholar
2. Kawamura, T., Yamamoto, N. and Nakayama, Y., JARECT, ed.Hamakawa, Y., Ohmsha and North-Holland Publishing Co. 6 (1983) 325 Google Scholar
3. Roorda, S., Kammann, D., Sinke, W.C., Van De Walle, G.F.A. and Van Gorkum, A.A., Mat.Lett. 2 (1990) 259 Google Scholar
4. Zellama, K., Germain, P., Squelard, S., Bourgoin, J.C. and Thomas, P.A., J.Appl.Phys. 50 (1979) 6995 Google Scholar
5. Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. and Jacobson, D.C., J.Appl.Phys. 57(1985) 1795 Google Scholar
6. Tatsumi, Y., Hirata, M. and Yamada, K., J.Phys.Soc.Jpn., 50 (1981) 2288 Google Scholar
7. Oki, F., Ogawa, Y. and Fujiki, Y., Jpn.J.Appl.Phys., 8 (1969) 1056 Google Scholar
8. Bosnell, J.R. and Voisey, U.C., Thin Solid Films, 6 (1970) 161 Google Scholar
9. Herd, S.R., Chaudhari, P. and Brodsky, M.H., J.Non-Cryst.Solid, 1 (1972) 309 Google Scholar
10. Sigurd, D., Ottaviani, G., Marrello, V., Mayer, J.W. and McCaldin, J.O., J.Non-Cryst.Solid, 12 (1973) 135 Google Scholar
11. Ottaviani, G., Sigurd, D., Marrello, V., Mayer, J.W. and McCaldin, J.O., J.Appl.Phys., 45 (1974) 1730 Google Scholar
12. Hultman, L., Robertsson, A., Hentzell, H.T.G., Engstrom, I. and Psaras, P.A., J.Appl.Phys., 62 (1987) 3647 Google Scholar
13. Hung, L.S., Chen, S.H. and Mayer, J.W., Mat.Res.Soc.Proc., 25 (1984) 253 Google Scholar
14. Homma, H., Schuller, I.K., Sevenhans, W. and Bruynseraede, Y., Appl.Phys.Lett. 50 (1987) 594 Google Scholar
15. Bravman, J.C. and Sinclair, R., J.Electron Microsc.Tech. 1 (1984) 53 Google Scholar
16. Morgiel, J., Wu, I.W., Chiang, A. and Sinclair, R., Mat.Res.Soc.Proc., 182 (1990) 191 Google Scholar
17. Kirtikar, A.S., Morgiel, J., Sinclair, R., Wu, I.W. and Chiang, A., Mat.Res.Soc.Proc., in press (1991)Google Scholar