Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T17:59:47.928Z Has data issue: false hasContentIssue false

Crystallization Behavior and Ferroelectric Properties of YMnO3 Thin Films on Si (100) Substrates

Published online by Cambridge University Press:  17 March 2011

Dong Chul Yoo
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Jeong Yong Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Ik Soo Kim
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, Seoul 136-791, Korea
Yong Tae Kim
Affiliation:
Semiconductor Materials Laboratory, Korea Institute of Science and Technology, Seoul 136-791, Korea
Get access

Abstract

YMnO3 thin films were sputtered on Si (100) substrates under different ambient conditions. After rapid thermal annealing process at 850 °C, the YMnO3 film deposited in Ar ambient had random orientations and the YMnO3 film deposited in Ar+O2 ambient was crystallized with distinct two layers, i.e., c-axis oriented layer in top region and random oriented layer in bottom region. Relations between the microstructure and the electrical properties of Pt/YMnO3/Si capacitor were investigated. Memory window and leakage current depended on the orientation of the YMnO3 thin films and the interfacial microstructure of the YMnO3/Si, respectively

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yi, W. C., Choe, J. S., Moon, C. R., Kwun, S. I. and Yoon, J. G., Appl. Phys. Lett. 73, 903 (1998).Google Scholar
2. Iliev, M. N., Lee, H. G., Popov, V. N., Abrashev, M. V., Hamed, A., Meng, R. L. and Chu, C. W., Phys. Rev. B 56, 2488 (1997).Google Scholar
3. Yi, W. C., Seo, C. S., Kwun, S. I. and Yoon, J. G., Appl. Phys. Lett. 77, 1044 (2000).Google Scholar
4. Lee, H. N., Kim, Y. T. and Choh, S. H., Appl. Phys. Lett. 76, 1066 (2000).Google Scholar
5. Fujimura, N., Ishida, T., Yoshimura, T. and Ito, T., Appl. Phys. Lett. 69, 1011 (1996).Google Scholar
6. Rokuta, E., Hotta, Y., tabata, H., Kobayashi, H. and Kawai, T., J. Appl. Phys. 88, 6598 (2000).Google Scholar
7. Imada, S., Shouriki, S., Tokumitsu, E. and Ishiwara, H., Jpn. J. Appl. Phys. 37, 6497 (1998).Google Scholar
8. Yoshimura, T., Fujimura, N. and Ito, T., Appl. Phys. Lett. 73, 414 (1998).Google Scholar
9. Yoshimura, T., Fujimura, N., Ito, D. and Ito, T., J. Appl. Phys. 87, 3444 (2000).Google Scholar
10. Fujimura, N., Azuma, S. I., Aoki, N. and Yoshimura, T., J. Appl. Phys. 80, 7084 (1996).Google Scholar
11. Lee, H. N., Kim, Y. T. and Park, Y. K., Appl. Phys. Lett. 74, 3887 (1999).Google Scholar