Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T17:40:42.876Z Has data issue: false hasContentIssue false

The Crystalline-Amorphous Transformation in Natural Zirconolite: Evidence for Long-Term Annealing

Published online by Cambridge University Press:  10 February 2011

Gregory R. Lumpkin
Affiliation:
Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia
Katherine L. Smith
Affiliation:
Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia
Mark G. Blackford
Affiliation:
Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW 2234, Australia
Reto Gieré
Affiliation:
Dept. of Earth and Atmospheric Sciences, Purdue Univ., West Lafayette, IN 47907-1397, USA
C. Terry Williams
Affiliation:
Dept. of Mineralogy, The Natural History Museum, Cromwell Rd., London SW7 5BD, UK
Get access

Abstract

Dose-age relationships have been determined by analytical and transmission electron microscopy (AEM and TEM) for the onset dose and critical amorphization dose of a suite of natural zirconolites. Together with a preliminary investigation of the thermal histories of the zirconolite-bearing rocks, the results indicate that valid estimates of D0 (intercept dose at t = 0) and K (annealing rate constant) are obtained and that the host rocks experienced temperatures on the order of 100-200 °C averaged over time. The natural samples are therefore best suited as radiation damage analogues for waste forms stored under deep borehole conditions where temperatures of 100-450 °C are expected. Our results indicate that the critical amorphization (or saturation) dose of zirconolite will increase by a factor of approximately 2 or more as a result of storage at elevated temperature. The effect of long-term annealing on the critical amorphization dose is only important for times in excess of 107-108 years due to the low annealing rate constant of 10−9/yr.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ringwood, A.E., Kesson, S.E., Reeve, K.D., Levins, D.M., and Ramm, E.J., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C. (Elsevier, New York, 1988) p. 233.Google Scholar
2 Harker, A.B., in Radioactive Waste Forms for the Future, edited by Lutze, W. and Ewing, R.C. (Elsevier, New York, 1988) p. 335.Google Scholar
3 Vance, E.R., Jostsons, A., Day, R.A., Ball, C.J., Begg, B.D., and Angel, P.J., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Proc. 412, Pittsburgh, PA, 1996) pp. 4147.Google Scholar
4 Vance, E.R., Hart, K.P., Day, R.A., Begg, B.D., Angel, P.J., Loi, E., Weir, J., and Oversby, V.M., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Proc. 412, Pittsburgh, PA, 1996) pp. 4955.Google Scholar
5 Ewing, R.C. and Headley, T.J., J. Nucl. Mater. 119, 102 (1983).Google Scholar
6 Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C., Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr., Boatner, L.A., and Abraham, M.M., J. Mater. Res. 1, 564 (1986).Google Scholar
7 Clinard, F.W. Jr., Rohr, D.L., and Roof, R.B., Nucl. Instr. Meth. Phys. Res. B1, 581586 (1984).Google Scholar
8 Weber, W.J., Wald, J.W., and HMatzke, j., J. Nucl. Mater. 138, 196209 (1986).Google Scholar
9 Lumpkin, G.R., Hart, K.P., McGlinn, P.J., Payne, T.E., Gieré, R., and Williams, C.T., Radiochim. Acta 66/67, 469474 (1994).Google Scholar
10 Lumpkin, G.R., Smith, K.L., Blackford, M.G., Gieré, R., and Williams, C.T., Micron 25, 581587 (1994).Google Scholar
11 Lumpkin, G.R., Smith, K.L., and Gieré, R., Micron 28, 57 (1997).Google Scholar
12 Williams, C.T. and Gieré, R., Bull. Nat. Hist. Mus. Lond. (Geol.) 52, 1 (1996).Google Scholar
13 Weber, W.J., Ewing, R.C., and Lutze, W., in Scientific Basis for Nuclear Waste Management XIX, edited by Murphy, W.M. and Knecht, D.A. (Mater. Res. Soc. Proc. 412, Pittsburgh, PA, 1996) pp. 2532.Google Scholar
14 Eby, G.N. and Mariano, A.N., J. South Amer. Earth Sci. 6, 207 (1992).Google Scholar
15 Heinrich, E. Wm., The Geology of Carbonatites (R.E. Krieger Publishing Co., Huntington, New York, 1980).Google Scholar
16 Spear, F.S., Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths (Mineralogical Society of America, Washington, D.C., 1995).Google Scholar
17 Hansmann, W., Schweiz. Mineral. Petrogr. Mitt. 76, 421451 (1996).Google Scholar
18 Gieré, R., in Rare Earth Minerals, edited by Jones, A.P., Wall, F.W., and Williams, C.T. (Chapman and Hall, London, 1996) p. 105.Google Scholar
19 Gerdes, M.L., Baumgartner, L.P., Person, M., and Rumble, D. III, Amer. Mineral. 80, 1004 (1995).Google Scholar
20 Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L., and Hobbs, L.W., J. Nucl. Mater. 126, 245254 (1984).Google Scholar
21 Lumpkin, G.R., Colella, M., Smith, K.L., Mitchell, R.H., and Larsen, A.O., in Scientific Basis for Nuclear Waste Management XXI, in press.Google Scholar
22 Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr., Progr. Nucl. Energy 29, 63 (1995).Google Scholar
23 White, T.J., Ewing, R.C., Wang, L.M., Forrester, J.S., and Montross, C., in Scientific Basis for Nuclear Waste Management XVIII, edited by Murakami, T. and Ewing, R.C. (Mater. Res. Soc. Proc. 353, Pittsburgh, PA, 1995) pp. 14131420.Google Scholar