Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T09:10:42.982Z Has data issue: false hasContentIssue false

Crystalline Perfection of Semiconductor Surfaces by X-Ray Multiple Diffraction

Published online by Cambridge University Press:  21 February 2011

S. L. Morelhao
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081–970 Campinas, SP, Brazil
L. H. Avanci
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081–970 Campinas, SP, Brazil
L. P. Cardoso
Affiliation:
Instituto de Fisica, UNICAMP, CP 6165, 13081–970 Campinas, SP, Brazil
Get access

Abstract

In this study, a method is proposed for evaluating the crystalline perfection of semiconductor surfaces. This method takes advantage of the three-dimensional nature of the X-ray multiple diffraction (MD) phenomenon. The effects that crystalline imperfections have on the MD Bragg condition are theoretically investigated. This theory provides information regarding the dynamical (primary extinction) or the kinematical (secondary extinction) regime in which the energy transfer among the MD beams occurs. In dynamical regime when the surface consists of large perfect-crystal regions (low surface-defect density), the method permits analysis of misorientation of these regions in directions parallel and perpendicular to the crystal surface. The perfection of GaAs and Ge (001) surfaces has been investigated using this method after mechanical and/or chemical polishing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hang, Z., Shen, H., and Poliak, F.H., J. Appl. Phys. 64, 3233 (1988).Google Scholar
[2] Wang, V.S. and Matyi, R.J., J. Elect. Mat. 21(1), 23 (1992).Google Scholar
[3] Wang, V. S. and Matyi, R. J., J. Appl. Phys. 72(11), 5158 (1992).Google Scholar
[4] Isherwood, B.J. and Wallace, C.A., J. Appl. Cryst. 3, 66 (1970)Google Scholar
[5] Darwin, C. G., Phil. Mag. 43, 800 (1922).Google Scholar
[6] Zachariasen, W. H., Phys. Rev. Lett. 18(6), 195 (1967).Google Scholar
[7] Kato, N., Acta Cryst. A36, 770 (1980).Google Scholar
[8] Moran, P. D. and Matyi, R. J., Acta Cryst. A49, 330 (1993).Google Scholar
[9] Zachariasen, W. H., Acta Cryst. 18, 705 (1965).Google Scholar
[10] Iida, A. and Kohra, K., Phys. Status Solidi A51, 533 (1979).Google Scholar
[11] Morelhao, S. L., Cardoso, L. P., Sasaki, J.M. and de Carvalho, M.M.G., J. Appl. Phys. 70(5), 2589 (1991).Google Scholar
[12] Chang, S. L., in Multiple Diffraction ofX-Ray in Crystals, Springer Ser. Solid-State Sci., Vol. 50 (1984).Google Scholar
[13] Caticha-Ellis, S., Acta Cryst. A25, 666 (1969).Google Scholar
[14] Moon, R. M. and Shull, C. G., Acta Cryst. 17, 805 (1964).Google Scholar
[15] Colella, R., Acta Cryst. A30, 413 (1974).Google Scholar
[16] Pinker, Z. G. in Dynamical Scattering ofX-Ray in Crystals, Springer Ser. Solid-State Sci., Vol. 3 (1977).Google Scholar
[17] Morelhao, S. L. and Cardoso, L. P., J. Appl. Phys. 73(9), 4218 (1993).Google Scholar
[18] Morelhao, S. L. and Cardoso, L. P., Solid State Comm. 88(6), 465 (1993).Google Scholar
[19] Schneider, J. R., Goncalves, O.D. and Graf, H.A., Acta Cryst. A44, 461 (1988).Google Scholar