Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T03:41:00.994Z Has data issue: false hasContentIssue false

Crystalline Path Formation in Nanoglasses of PCM

Published online by Cambridge University Press:  01 February 2011

Marco Nardone
Affiliation:
[email protected], The University of Toledo, Physics and Astronomy, Toledo, Ohio, United States
Mark Alexander Simon
Affiliation:
[email protected], The University of Toledo, Physics and Astronomy, Toledo, Ohio, United States
Ilya V. Karpov
Affiliation:
[email protected], Intel, Santa Clara, California, United States
Victor G. Karpov
Affiliation:
[email protected], University of Toledo, Physics & Astronomy, Toledo, Ohio, United States
Get access

Abstract

This work presents an analytical model of crystalline phase formation in nanoglasses of phase change memory. We describe a data loss mechanism when the cell resistance changes significantly at elevated temperatures over long periods of time with no electrical bias applied. Unlike the standard approach, which relates crystalline shunt formation to aggregates of crystalline particles forming the percolation cluster, we look at the rare events of almost rectilinear path formation in very thin structures. They can occur at crystalline volume fractions considerably lower than the critical volume fraction required for percolation. We find the characteristic parameters which can describe statistics of these rare events.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bez, R. IEDM Tech. Dig. (IEEE, Baltimore, 2009), p. 89 Google Scholar
2 Kau, D. Tang, S. Karpov, I. et al. , IEDM Tech. Dig. (IEEE, Baltimore, 2009), p. 617 Google Scholar
3 Russo, U. Ielmini, D. and Lacaita, A. L. Proc. 45th IRPS, (IEEE, Phoenix, 2007), p. 547.Google Scholar
4 Russo, U. Ielmini, D. Redaelli, A. and Lacaita, A. L. IEEE Transactions on Electron Devices 53, 3032 (2006).Google Scholar
5 Gleixner, B., Pirovano, A. Sarkarl, J., Ottogalli, F. Tortorelli, E. Tosi, M. and Bez, R. Proc. 45th IRPS (IEEE, Phoenix, 2007), p. 542.Google Scholar
6 Efros, A. L. and Shklovskii, B. I. Electronic Properties of Doped Semiconductors (Verlag, Berlin 1979).Google Scholar
7 Mantegazza, D. Ielmini, D. Pirovano, A. Lacaita, A. L. IEEE Electron Device Lett. 28, 865 (2007).Google Scholar
8 Pollak, M. and Hauser, J. J. Phys. Rev. Lett. 31, 21 (1973).Google Scholar
9 Raikh, M. E. and Ruzin, I. M. in Mesoscopic Phenomena in Solids, edited by Altshuller, B. L. Lee, P. A. and Webb, R. A. (Elsevier, Amsterdam, 1991), p. 315.Google Scholar
10 Lombardo, S. Stathis, J. H. Linder, B. P. Pey, K. L. Palumbo, F. and Tung, C. H. J. Appl. Phys. 98, 121301 (2005).Google Scholar
11 Korn, G. A. and Korn, T. M. Mathematical Handbook for Scientists and Engineers, 2nd ed. (Dover Publications, Mineola, 2000).Google Scholar
12 Slutsky, M. Am. J. Phys. 73, 308 (2005).Google Scholar
13 Karpov, V. G. Kryukov, Y. A. Karpov, I. V. and Mitra, M. J. Appl. Phys. 104, 054507 (2008). I. V., Karpov, M., Mitra, G., Spadini, U., Kau, Y. A., Kryukov and V. G., Karpov J. Appl. Phys. 102, 124503 (2007).Google Scholar
14 Kalb, J. A. Wen, C. Y. and Spaepen, Frans, J. Appl. Phys. 98, 054902 (2005).Google Scholar