Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:07:41.759Z Has data issue: false hasContentIssue false

Crystal Structure Of Lt Gaas Layers Before And After Annealing

Published online by Cambridge University Press:  15 February 2011

Zuzanna Liliental-Weber*
Affiliation:
Lawrence Berkeley Laboratory, I Cyclotron Rd., Berkeley, CA 94720
Get access

Abstract

The structural quality of GaAs layers grown at low temperatures by solid-source and gassource MBE at different growth conditions is described. Dependence on the growth temperature and concentration of As [expressed as As/Ga beam equivalent pressure (BEP)] used for the growth is discussed. A higher growth temperature is required to obtain the same monocrystalline layer thickness with increased BEP The annealing of these layers is associated with the formation of As precipitates. Semicoherent precipitates with lowest formation energies arc formed in the monocrystalline parts of the layers grown with the lowest BEP. Precipitates with higher bormation energies are formed when higher BEP is applied; they are also formed in the vicinity of structural defects. Formation of As precipitates releases strain in the layers. Arsenic precipitates are not formed in annealed ternary (InAlAs) layers despite their semi-insulating properties. The role of As precipitates in semi-insulating properties and the short lifetime of minority carriers in these layers is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, F. W., Calawa, A.R., Chen, C.L., Manfra, M.J., and Mahoney, L.J., IEEE EDL–9, 77 (1988).Google Scholar
2.Smith, F. W., Le, H.Q., Diadiuk, V., Hollis, M.A., Calawa, A.R., Gupta, S., Frankel, M., Dykaar, D.R., Mourou, G.A., and Hsiang, T.Y., Appi. Phys. Lett., 54, 890 (1989).10.1063/1.100800Google Scholar
3.Kaminska, M., Liliental-Weber, Z., Weber, E.R., George, T, Kortright, J.B., Smith, F. W., Tsaur, B.Y., and Calawa, A.R., Appl. Phys. Lett., 54, 1881 (1989).10.1063/1.101229Google Scholar
4.Kaminska, M., Weber, E.R., Liliental-Weber, Z., Leon, R., and Rek, Z., J. Vac. Sci. Technol., B 7, 710 (1989).10.1116/1.584630Google Scholar
5.Liliental-Weber, Z., MRS Proc., vol.198, (1990), p. 371.10.1557/PROC-198-371Google Scholar
6.Liliental-Weber, Z., Swider, W., Yu, K.M., Kortright, J.B., Smith, F. W., and Calawa, A.R., Appl. Phys. Lett., 2153 (1991).10.1063/1.104990Google Scholar
7.Liliental-Weber, Z. and Smith, F. W., to be published.Google Scholar
8.Liliental-Weber, .Z., Claverie, A., Werncr, P., and Weber, E.R., Proc. XVI-th Int. Conf. on Defects in Sem., Bethlehem, PA, (1991) in press.Google Scholar
9.Claverie, A. and Liliental-Weber, Z., and Weber, E.R., VI Int. Workshop on the Physics of Sem. Dev., New Dehli, (1991), in press.Google Scholar
10.Liliental-Weber, Z. and Marakas, G., to be published.Google Scholar
11.Eaglesham, D.J., Pfeiffer, L.N., West, K.W., and Dykaar, D.R., Appl. Phys. Lett., 58, 65 (1991).10.1063/1.104446Google Scholar
12.People, R. and Bean, J.C., Appl. Phys. Lett. 49, 28 (1986).10.1063/1.97637Google Scholar
13.Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
14.Liliental-Weber, Z., Ishikawa, A., Teriauchi, M., and Tanaka, M., MRS Proc., 208, 183 (1991).10.1557/PROC-208-183Google Scholar
15.Kowalski, G., Kurpiewski, A., Kaminska, M., Lszczynski, M., Suski, T., and Weber, E.R., MRS Proc., this volume.Google Scholar
16.Melloch, M.R., and Otsuka, N., Woodall, J.M., Warren, A.C., and Frecouf, J.L., Appl. Phys. Lett. 57, 1531 (1990).10.1063/1.103343Google Scholar
17.Liliental-Weber, Z., Claverie, A., Smith, F., and Calawa, A.R., Appl. Phys. A 53, 141 (1991).10.1007/BF00323874Google Scholar
18.Liliental-Weber, Z., Cooper, G., Mariella, R., and Kocot, C., J. Vac. Sci. Technol., B9, 2323.10.1116/1.585741Google Scholar
19.Claverie, A. and Liliental-Weber, Z., Phil. Mag. (1992) in press.Google Scholar
20.Melloch, M.R., Otsuka, N., Mahalingam, K., Warren, A.C., Woodall, J.M., and Kirchner, P.D., MRS Proc., this volume.Google Scholar
21.Claverie, A., Liliental-Weber, Z., Swider, W., Werncr, P., Bhattacharya, P.K., Gupta, S., and , G., MRS Proc., this volumeGoogle Scholar
22.Claverie, A., Yu, K.M., Swider, W., Liliental-Wcbcr, Z., O'Kecffc, M., Kilaas, R., and Bhattacharya, P.K., Appl. Phys. Lett. subm.Google Scholar
23.Warren, A.C., Woodall, J.M., Freeouf, J.L., Melloch, M.R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).10.1063/1.103474Google Scholar
24.Mansrech, M.O., Look, D.C., Evans, K.R., and Stutz, C.E., Phys. Rev., B 41, 10272 (1990).10.1103/PhysRevB.41.10272Google Scholar
25.Kaminska, M. and Weber, E.R., Proc. 20th Internat. Conf. on the Physics of Semiconductors (ICPS) 1990, in print.Google Scholar
26.Kaminska, M. and Weber, E.R., MRS Proc., this volume.Google Scholar
27.Schaff, W.J., Offsey, S.D., Song, X.J., Eastman, L. E., Norris, T.B., Sha, W.J., Mourou, G.A., MRS Proc., this volume.Google Scholar
28.Morse, J.D. and Mariella, R.P., MRS Proc., this volume.Google Scholar