Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:01:03.300Z Has data issue: false hasContentIssue false

Crystal Structure Analysis in the Dehydrogenation Process of Mg(NH2)2-LiH System

Published online by Cambridge University Press:  26 February 2011

Tatsuo Noritake
Affiliation:
[email protected], Toyota Central R&D Labs., Inc., Materials Dept., 41-1 Yokomichi, Nagakute, Nagakute-cho, Aichi, 480-1192, Japan, +81-561-63-5367, +81-561-63-6137
Masakazu Aoki
Affiliation:
[email protected], Toyota Central R&D Labs., Inc., Materials Dept., Aichi, 480-1192, Japan
Shin-ichi Towata
Affiliation:
[email protected], Toyota Central R&D Labs., Inc., Materials Dept., Aichi, 480-1192, Japan
Yuko Nakamori
Affiliation:
[email protected], Tohoku University, Institute for Materials Research, Sendai, 980-8577, Japan
Shin-ichi Orimo
Affiliation:
[email protected], Tohoku University, Institute for Materials Research, Sendai, 980-8577, Japan
Get access

Abstract

Mg(NH2)2-LiH system which have the properties of reversible hydrogenation and dehydrogenation is one of the promising candidates for new hydrogen storage materials. For understanding of the reversible reaction mechanism, we investigated the crystal structure changes in 3Mg(NH2)2-12LiH system using the pressure-composition (p-c) isotherm measurement and synchrotron X-ray diffraction. The sample was prepared by the hydrogenation of Mg3N2 + 4Li3N. At the several dehydrogenation stages of the p-c isotherm measurement at temperature 523 K, the sample was taken out and X-ray diffraction measurement was performed. By the amount of desorbed hydrogen, the reaction was expressed as the following formula, Mg(NH2)2 + 4LiH → LixMg(NH2)2-x(NH)x + (4-x)LiH + xH2 (x = 0∼2). The crystal structures of LixMg(NH2)2-x(NH)x, similar to CaF2-type one, formed during the dehydrogenation reaction were determined by Rietveld analysis. As a result, it is considered that the dehydrogenation process might relate to the diffusion of Li+ ion in cation sites of Mg(NH2)2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Orimo, S., Nakamori, Y., Kitahara, G., Miwa, K., Ohba, N., Noritake, T. and Towata, S., Appl. Phys. A 79, 1765 (2004).Google Scholar
2. Nakamori, Y., Ninomiya, A., Kitahara, G., Aoki, M., Noritake, T., Miwa, K., Kojima, Y. and Orimo, S., J. Power Sources 155, 447 (2006).Google Scholar
3. Aoki, M., Miwa, K., Noritake, T., Kitahara, G., Nakamori, Y., Orimo, S. and Towata, S.: Appl. Phys. A 80, 1409 (2004).Google Scholar
4. Pinkerton, F., Meisner, G., Meyer, M., Balogh, M. and Kundrat, M.: J. Phys. Chem. B 109, 6 (2005).Google Scholar
5. Miwa, K., Ohba, N., Towata, S., Nakamori, Y. and Orimo, S., Phys. Rev. B 71, 195109 (2005).Google Scholar
6. Noritake, T., Aoki, M., Towata, S., Ninomiya, A., Nakamori, Y. and Orimo, S., Appl. Phys. A 83, 277 (2006).Google Scholar
7. Bogdanović, B. and Schwickardi, M., J. Alloys Compd. 253–254, 1 (1997).Google Scholar
8. Chen, P., Xiong, Z.T., Luo, J.Z., Lin, J.Y. and Tan, K.L., Nature 420, 302 (2002).Google Scholar
9. Nakamori, Y., Kitahara, G., Miwa, K., Towata, S. and Orimo, S., Appl. Phys. A 80, 1 (2005).Google Scholar
10. Xiong, Z.T., Wu, G.T., Hu, J.J. and Chen, P., Adv. Mater. 16, 1522 (2004).Google Scholar
11. Luo, W., J. Alloys Compd. 381, 284 (2004).Google Scholar
12. Leng, H.Y., Ichikawa, T., Hino, S., Hanada, N., Isobe, S. and Fujii, H., J. Phys. Chem. B 108, 8763 (2004).Google Scholar
13. Aoki, M., Noritake, T., Kitahara, G., Nakamori, Y., Towata, S. and Orimo, S., J. Alloys Compd. 428 307(2007).Google Scholar
14. Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M. and Ikeda, N., Nucl. Instrum. Methods A 467–468, 1045 (2001).Google Scholar
15. Izumi, F. and Ikeda, T., Mater. Sci. Forum 321–324, 198 (2000).Google Scholar
16. Jacobs, H., Anorg, Z.. Allg. Chem., 382, 97109 (1971)Google Scholar
17. Rijssenbeek, J., Gao, Y., Hanson, J., Huang, Q., Jones, C. and Toby, B., J. Alloys Compd. (in press).Google Scholar