Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:30:36.419Z Has data issue: false hasContentIssue false

Crystal. Liquid and Glass in 2 Dimensions. Analysis of the glass Transition

Published online by Cambridge University Press:  25 February 2011

Praveen Chaudhari
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

A molecular dynamics technique has been used to simulate the melting of a 2-dimensional diatomic crystal and to quench the liquid phase to a solid phase. We demonstrate that a 2-dimensional dense amorphous structure can be obtained and that a 2-dimensional glass transition does exist. Furthermore, atomic vibrations in the liquid can be separated from motion produced by diffusion. The relaxation time during which atoms have a vibratory motion but do not diffuse, diverges to infinity near the observed glass transition. Because of the 2-dimensionality. we are able to display the microscopic processes associated with the glass transition.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wendt, H.R. and Abraham, F.F.. Phys. Rev. Letters, 41, 12441246 (1978)Google Scholar
[2] Abraham, F.F.. J. Chem. Phys. 72, 359365 (1980)Google Scholar
[3] Rahman, A., Mandell, M.J. and McTague, J. P., J. Chem. Phys. 64, 15641568 (1976)Google Scholar
[4] Woodcock, L.V.. Angell, C.A. and Cheeseman, P.. J. Chem. Phys. 65, 15651577 (1976)Google Scholar
[5] Clarke, J.H.R., J. Chem. Soc. Faraday Trans. 2, 75. 13711387 (1979)Google Scholar
[6] Cape, J.N. and Woodcock, L.V.. J. Chem. Phys. 72, 976985 (1980)Google Scholar
[7] Hiwatari, Y., J. Phys. C : Solid St. Phys. 13. 58995910 (1980)Google Scholar
[8] Angell, C.A., Clarke, J. H. R. and Woodcock, L.V.. Adv. Chem. Phys. 48, 397453 (1981)Google Scholar
[9] Mitra, S.K.. Phil. Mag. B 45, 529548 (1982)Google Scholar
[10] Kimura, M. and Yonezawa, F.. in Topological Disorder in Condensed Matter, edited by Yonezawa, F. and Ninomiya, T. (Springer-Verlag Berlin Heidelberg 1983) pp. 80110 Google Scholar
[11] Fox, J.R. and Andersen, H.C., J. Phys. Chem. 88, 40194027 (1984)Google Scholar
[12] Spaepen, F.. J. Non-cryst. Sol. 31, 207221 (1978)Google Scholar
[13] Nelson, D.R.. Rubinstein, M. and Spaepen, F., Phil. Mag. A46. 105126 (1982)Google Scholar
[14] Argon, A.S. and Kuo, H.Y., Mater. Sci.& Eng. 39. 1011091(1979)Google Scholar
[15] Argon, A.S. and Shi, L.T., Phil. Mag. A 46. 275294 (1982)Google Scholar
[16] Srolovitz, D., Maeda, K., Vitek, V. and Egami, T., Phil. Mag. A 44, 847866 (1981)Google Scholar
[17] Lançon, F., Billard, L. and Chamberod, A., J. Phys. F : Met. Phys. 14, 579591 (1984)Google Scholar
[18] Lançon, F., Billard, L., Laugler, J. and Chamberod, A.. J. Physique 46, 235241 (1985)Google Scholar
[19] Hoover, W.G.. Ladd, A.J.C. and Moran, B.. Phys. Rev. Letts. 48, 18181920 (1982)Google Scholar
[20] Evans, D. J. and Morris, G. P., Chemical Physics 77. 6366 (1983)Google Scholar
[21] Abraham, F.F., J. Vac. Scl. Technol. B 2. 534549 (1984)Google Scholar
[22] Abraham, F. F.. Private CommunicationGoogle Scholar
[23] Nordsieck, A.. Math. comp. 16. 2249 (1962)Google Scholar
[24] Cohen, M.H. and Grest, G.S.. Phys. Rev. B, 20, 10771098 (1979)CrossRefGoogle Scholar