Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:53:25.140Z Has data issue: false hasContentIssue false

Crystal Growth and Characterization of CdTe and Cd0.9Zn0.1Te for Nuclear Radiation Detectors

Published online by Cambridge University Press:  01 February 2011

Krishna Mandal
Affiliation:
[email protected], EIC Laboratories, Inc., Advanced Materials, 111 Downey St, Norwood, MA, 02062, United States, 781-769-9450, 781-551-0283
Sung H. Kang
Affiliation:
[email protected], EIC Laboratories, Inc., Norwood, MA, 02062, United States
Michael Choi
Affiliation:
[email protected], EIC Laboratories, Inc., Norwood, MA, 02062, United State s
Alket Mertiri
Affiliation:
[email protected], EIC Laboratories, Inc., Norwood, MA, 02062, United States
Gary W Pabst
Affiliation:
[email protected], EIC Laboratories, Inc., Norwood, MA, 02062, United States
Caleb Noblitt
Affiliation:
[email protected], EIC Laboratories, Inc., Norwood, MA, 02062, United States
Get access

Abstract

CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively at EIC Laboratories, Inc. for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from in-house zone refined ultra pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled and optimized by a computer simulation and modeling program (MASTRAPP). The grown crystals were thoroughly characterized after sequential surface passivations and post-growth annealing treatments with and without component overpressures. The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ∼10 μm for CdTe crystal and ∼8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm−2 for CdTe and ≤ 3×104 cm−2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ∼1.5×1010 Ω·cm for CdTe and 2-5×1011 Ω·cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe=2×10−3 cm2/V (μτh=8×10−5 cm2/V) and μτ3-6×10−3 cm2/V (μτh=4-6×10−5 cm2/V) for CdTe and CZT, respectively. Final assessments of the detector performance have been carried out using 241Am (60 keV) and 137Cs (662 keV) energy sources and the results are presented in this paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Egarievwe, S. U., Chen, K.-T., Burger, A., James, R. B. and Lisse, M., J. X-ray Sci. and Tech. 6, 309 (1996).Google Scholar
2. McGregor, D.S., He, Z., Seifert, H.A., Wehe, D. K. and Rojeski, R. A., Appl. Phys. Lett. 72, 792 (1998).10.1063/1.120895Google Scholar
3. McNeil, W. J., McGregor, D. S., Bolotnikov, A. E., Wright, G. W. and James, R. B., Appl. Phys. Lett. 84, 1988 (2004).Google Scholar
4. Barrett, H. H., Eskin, J. D., and Barber, H. B., Phys. Rev. Lett. 75, 156 (1995).10.1103/PhysRevLett.75.156Google Scholar
5. Luke, P. N., Appl. Phys. Lett. 65, 2884 (1994).Google Scholar
6. James, R. B., Schlesinger, T.E., Lund, J. and Schieber, M., “Semiconductors for Room Temperature Nuclear Detector Applications” (Academic Press, New York, 1995).Google Scholar
7. Burger, A., Chen, H., Chattopadhyay, K., Ndap, J. O., Egarievwe, S. U. and James, R.B., SPIE 3446, 154 (1998).Google Scholar
8. Sen, S., Hettich, H.L., Rhiger, D.R., Price, S. L., Currie, M. C., Ginn, R.P. and McLean, E. O., J. Electron. Mater. 28, 718 (1999).Google Scholar
9. Krawczynski, H., Jung, I., Perkins, J., A. Burger and Groza, M., SPIE 5540, 1 (2004).Google Scholar
10. Garandet, J.P., Favier, J.J. and Camel, D., “Handbook of Crystal Growth” (Elsevier Science, Amsterdam, 1994).Google Scholar
11. Mandal, Krishna C., Kang, S. H., Choi, M., Kargar, Alireza, Harrison, Mark J., McGregor, Douglas S., Bolotnikov, A. E., Karini, G. A., Camarda, G. C., and James, R. B., IEEE Trans. Nucl. Sci. 54, 802 (2007).Google Scholar
12. Koley, G., Liu, J. and Mandal, Krishna C., Appl. Phys. Lett. 90, 102121 (2007).10.1063/1.2712496Google Scholar
13. Mandal, Krishna C., Kang, S. H., Choi, M., Wei, J., Zheng, L., Zhang, H., Jellison, G. E., Groza, M. and Burger, A., J. Electron. Mater. 36 1013 (2007).10.1007/s11664-007-0164-yGoogle Scholar
14. Zhang, H., Zheng, L. L., Prasad, V. and Larson, D. J. Jr, J. Heat Transfer 120, 865 (1998).Google Scholar
15. Ma, R.H., Zhang, H., Larson, D.J. Jr, and Mandal, Krishna C., J. Crystal Growth, 266, 216 (2004).Google Scholar
16. Pandy, A., Yeckel, A., Reed, M., Szeles, C., Hainke, M., Müller, G., and Derby, J.J., J. Crystal Growth, 276, 133 (2005).10.1016/j.jcrysgro.2004.11.303Google Scholar
17. Yeckel, A., Compère, G., Pandy, A., and Derby, J.J., J. Crystal Growth, 263, 629 (2004).Google Scholar
18. Yeckel, A. and Derby, J.J., J. Crystal Growth, 233, 599 (2001).Google Scholar
19. Yeckel, A., Doty, F.P., and Derby, J.J., J. Crystal Growth, 203, 87 (1999).Google Scholar
20. Everson, W.J., Ard, C.K., Sepich, J.L., Dean, B.E., Neugebauer, G.T. and Schaake, H.F., J. Electron. Mater. 24, 505 (1995).10.1007/BF02657954Google Scholar
21. Jellison, G. E., Jr. and Modine, F. A., Appl. Opt. 36, 8184 (1997); ibid. 36, 8190 (1997).10.1364/AO.36.008184Google Scholar
22. Jellison, G. E., Jr., Griffiths, C. O., Holcomb, D. E. and Rouleau, C. M., Appl. Opt. 41, 6555 (2002).10.1364/AO.41.006555Google Scholar