Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:30:35.205Z Has data issue: false hasContentIssue false

Crystal Chemistry of Hydrogen Storage Materials

Published online by Cambridge University Press:  01 February 2011

Martin Owen Jones
Affiliation:
[email protected], University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom, +44 1865 272 681, +44 1865 272 656
William I. F. David
Affiliation:
[email protected], University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
Simon R. Johnson
Affiliation:
[email protected], University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
Marco Sommariva
Affiliation:
[email protected], ISIS Facility, Rutherford Appleton Laboratory, Chilton,, Didcot, OX11 0QX, United Kingdom
Rebecca L. Lowton
Affiliation:
[email protected], University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
Elizabeth A. Nickels
Affiliation:
[email protected], University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
Peter P. Edwards
Affiliation:
[email protected], University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR, United Kingdom
Get access

Abstract

We review here work on two classes of compounds that have been promoted as potential hydrogen storage materials; alkali metal amides and borohydrides, highlighting how their crystal structure and chemical properties may be used to influence the key hydrogen absorption and desorption parameters in these materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Crabtree, G. W., Dresselhaus, M. S. and Buchanan, M. V., Physics Today, 57, 3944 (2004).Google Scholar
2 Schlapbach, L. and Zuttel, A., Nature, 414, 353358 (2001).Google Scholar
3 Edwards, P. P., Kuznetsov, V., Johnson, S. R., Lodge, M. T.J. and Jones, M. O., in .Future Technologies for a Sustainable Electricity System., Eds Jamasb, T., Nuttall, W. J. and Pollitt, M. G., (Cambridge University Press, 2006).Google Scholar
4For example, see Orimo, S., Nakamori, Y., Eliseo, J. R., Zuttel, A. and Jensen, C. M., Chem. Rev. 107, 41114132 (2007).Google Scholar
5US Department of Energy, Office of Science (2004). Basic Research Needs for the Hydrogen Economy. Report of the Basic Energy Sciences Workshop on Hydrogen Production, http://www.sc.doe.gov/bes/hydrogen.pdf Google Scholar
6 Gregory, D. H., Meara, P. M. O., Gordon, A. G., Siddons, D. J., Blake, A. J., Barker, M. G., Hamor, T. A., Edwards, P. P., J. Alloys and Compounds 317-318, 237244 (2001).Google Scholar
7 David, W. I. F., Jones, M. O., Gregory, D. H., Jewell, C. M., Johnson, S. R., Walton, A., and Edwards, P.P., J. Am. Chem. Soc. 129(6), 15941601 (2007).Google Scholar
8 Lowton, Rebecca L., William, I. David, F., Jones, MartinO., Johnson, Simon R. and Edwards, Peter. P., accepted by J. Mater. Chem. (2008).Google Scholar
9 Nickels, E. A., Jones, M. O., David, W. I. F., Johnson, S. R., Lowton, R. L., Sommariva, M. and Edwards, P. P., Angewandte Chemie Int. Ed. 47, 14 (2008).Google Scholar
10 TOPAS, Coelho A. A., General Profile and Structure Analysis Software for Powder Diffraction Data, version 4.0; Bruker AXS: Karlsruhe, Germany, 2004;http://members.optusnet.com.au/~alancoelho/.Google Scholar
11 Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K. L., Nature 420, 302304 (2002).Google Scholar
12 Chen, P., Xiong, Z., Luo, J., Lin, J., Tan, K. L., J. Phys. Chem. 107, 1096710970 (2003).Google Scholar
13 Hu, Y. and Ruckenstein, E., J. Phys. Chem. A 107, (2003) 97379739 (2003).Google Scholar
14 Pinkerton, F. E., J. Alloys and Compounds 400, 7682 (2005).Google Scholar
15 Meisner, G. P., Pinkerton, F. E., Meyer, M. S., Balogh, M. P. and Kundrat, M. D., J. Alloys and Compounds 404-406, 2426 (2005).Google Scholar
16 Ichikawa, T., Hanada, N., Isobe, S., Leng, H.Y. and Fujii, H., J. Phys. Chem. B 108, 78877982 (2004).Google Scholar
17 Hayes, W. and Hutchings, M. T., Ionic Solids at High Temperatures Ed. Stoneham, A. M. (World Scientific, 1989).Google Scholar
18 Gillian, M. J., Ionic Solids at High Temperatures Ed. Stoneham, A. M. (World Scientific, 1989).Google Scholar
19 Farley, T. W. D., Hayes, W., Hull, S., Hutchings, M. T. and Vrtis, M., J. Phys. Condens. Mater 3, 47614781 (1991).Google Scholar
20 Hayoun, M., Meyer, M., Denieport, A., Acta Materialia 53, 28672874 (2005).Google Scholar
21 Noritake, T., Nozaki, H., Aoki, M., Towata, S., Kitahara, G., Nakamori, Y. and Orimo, S., J. Alloys and Compounds 393, 264268 (2005).Google Scholar
22 Jacobs, H. and Harbrecht, B., J. Less-Common Metals 85, 8795 (1982).Google Scholar
23 Grochala, W. and Edwards, P. P., Chem. Rev. 104(3), 12831316 (2004).Google Scholar
24 Nakamori, Y., Miwa, K., Ninomiya, A., Li, H., Ohba, N., Towata, S., Züttel, A., Orimo, S., Phys. Rev. B: Condens. Matter Mater. Phys. 74, 045126 (2006).Google Scholar
25 Soulie, J.-P., Renaudin, G., Cerny, R., Yvon, K., J. Alloys Compd. 346, 200 (2002).Google Scholar