Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:41:18.022Z Has data issue: false hasContentIssue false

Crystal Chemistry of Chemically Delithiated Layered Oxide Cathodes of Lithium Ion Batteries

Published online by Cambridge University Press:  11 February 2011

A. Manthiram
Affiliation:
Materials Science and Engineering Program, ETC 9.104, The University of Texas at Austin Austin, Texas 78712
S. Venkatraman
Affiliation:
Materials Science and Engineering Program, ETC 9.104, The University of Texas at Austin Austin, Texas 78712
Get access

Abstract

The structural and chemical stabilities of layered Li1-xCoO2-δ, Li1-xNi0.85Co0.15O2-δ and Li1-xNi0.5Mn0.5O2-δ (0 ≤ (1-x) ≤ 1) cathodes have been investigated by chemically extracting lithium from the corresponding LiMO2 with the oxidizer NO2BF4 in acetonitrile medium. While Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ begin to form a P3-type and a new O3-type (designated as O3') phases, respectively, for (1-x) < 0.5 and (1-x) < 0.3, Li1-xNi0.5Mn0.5O2-δ maintains the initial O3-type structure without forming any second phase. Chemical analysis with a redox titration indicates that the Li1-xCoO2-δ, Li1-xNi0.85Co0.15O2-δ, and Li1-xNi0.5Mn0.5O2-δ systems begin to lose oxygen from the lattice, respectively, for (1-x) < 0.5, < 0.3 and < 0.4, which is accompanied by an onset of a decrease in the c parameter. The oxygen loss signals chemical instability and the trend in instability correlates with the charging voltage profiles of the cathodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lu, Z., MacNeil, D. D., and Dahn, J. R., Electrochem. Solid-State Lett., 4, A191 (2001).Google Scholar
2. Chebiam, R. V., Prado, F., and Manthiram, A., Chem. Mater., 13, 2951 (2001).Google Scholar
3. Chebiam, R. V., Prado, F., and Manthiram, A., J. Solid State Chem., 163, 5 (2002).Google Scholar
4. Manthiram, A., Swinnea, J. S., Sui, Z. T., Steinfink, H., and Goodenough, J. B., J. Amer. Chem. Soc., 109, 6667 (1987).Google Scholar
5. Young, R. A., Shakthivel, A., Moss, T. S., and Paiva Santos, C. O., J. Appl. Crystallogr., 28, 366 (1995).Google Scholar
6. Venkatraman, S. and Manthiram, A., Chem. Mater., 14, 3907 (2002).Google Scholar
7. Amatucci, G. G., Tarascon, J. M., and Klein, L. C., J. Electrochem. Soc., 143, 1114 (1996).Google Scholar
8. Yang, X. Q., Sun, X., and Mcbreen, J., Electrochem. Commun., 2, 100 (2000).Google Scholar
9. Delmas, C., Menetrier, M., Croguennec, L., Levasseur, S., Peres, J. P., Pouillerie, C., Prado, G., Fournes, L., and Weill, F., Int. J. Inorg. Mater., 1, 11 (1999).Google Scholar
10. Kannan, A. M., Rabenberg, L., and Manthiram, A., Electrochem. Solid-State Lett., 6, A16 (2003).Google Scholar