Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:21:34.670Z Has data issue: false hasContentIssue false

Cross-Plane Thermoelectric Properties in Si/Ge Superlattices

Published online by Cambridge University Press:  21 March 2011

Bao Yang
Affiliation:
Mechanical and Aerospace Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139
Jian L. Liu
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095
Kang L. Wang
Affiliation:
Electrical Engineering Department, University of California, Los Angeles, CA 90095
Gang Chen
Affiliation:
Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

In this paper, a set of methods is developed to measure the Seebeck coefficient, electrical conductivity, and thermal conductivity in the cross-plane direction of thin films. The method employs microfabricated heaters, voltage and temperature sensors, and phase-lock amplifiers to determine the temperature and Seebeck voltage oscillation in the cross-plane direction of the samples, from which the thermal conductivity and Seebeck coefficient of thin films are determined simultaneously. The cross-plane electrical conductivity is also measured by a modified transmission line model. These methods are applied to Si/Ge superlattices grown by molecular beam epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B 47, 12727 (1993).Google Scholar
[2] Hyldgaard, P. and Mahan, G. D., Phys. Rev. B 56, 10754 (1997).Google Scholar
[3] Chen, G., Phys. Rev. B 57, 14958 (1998).Google Scholar
[4] Balandin, A., Khitun, A., Liu, J. L., Wang, K. L., Borca-Tasciuc, T., and Chen, G., Proc. 18th Int. Conf. Thermoelectrics, ICT'99, 23 (1999).Google Scholar
[5] Koga, T., Cronin, S. B., Dresslehaus, M. S., Liu, J. L., and Wang, K. L., Appl. Phys. Lett. 77, 1490 (2000).Google Scholar
[6] Fan, X.F., Zeng, G.H., LaBounty, C., Bowers, J.E., Croke, E., Ahn, C.C., Huxtable, S., Majumdar, A., and Shakouri, A., Appl. Phys. Lett. 78, 1580 (2001).Google Scholar
[7] Liu, W. L., Borca-Tasciuc, T., Chen, G., Liu, J. L., and Wang, K. L., Nanosci, J.. and Nanotech. 1, 37 (2001).Google Scholar
[8] Borca-Tasciuc, T., Liu, W. L., Liu, J. L., Zeng, T. F., Song, D. W., Moore, C. D., Chen, G., Wang, K. L., Goorsky, M. S., Radetic, T., Gronsky, R., Koga, T., and Dresselhaus, M. S., Superlattices and Microstructure 28, 199 (2000).Google Scholar
[9] Venkatasubramanian, R., Phys. Rev. B 61, 3091 (2000).Google Scholar
[10] Mahan, G.D., J. Appl. Phys. 76, 4362 (1994).Google Scholar
[11] Vining, C. B. and Mahan, G. D., J. Appl. Phys. 86, 6852 (1999).Google Scholar
[12] Shakouri, A. and Bowers, J.E., Appl. Phys. Lett. 71, 1234, (1997)Google Scholar
[13] Venkatasubramanian, R., Siivola, E., Colpitts, T, and O'Ouinn, B., Nature 413, 597(2001).Google Scholar
[14] Goldsmid, H. J., Thermoelectric Refrigeration, London, Heywood (1964).Google Scholar
[15] Yao, T., Appl. Phys. Lett. 51, 1798 (1987).Google Scholar
[16] Beyer, H., Lambrecht, A., Nurnus, J., Bottner, H., and Griessmann, H., Heinrich, A., Schmitt, L., Blumers, M., and Volklein, F., Proc. 18th Int. Conf. Thermoelectrics, ICT'99, 687 (1999).Google Scholar
[17] Venkatasubramanian, R., Recent Trends in Thermoelectric Materials Research III, Tritt, T. M., Ed., Academic Press 71, 196 (2001).Google Scholar
[18] Cahill, D. G., Rev. Sci. Instrum. 61, 802 (1990).Google Scholar
[19] Cahill, D. G., Katiyar, M., and Abelson, J. R., Phys. Rev. B 50, 6077 (1994).Google Scholar
[20] Liu, J.L., Tang, Y.S., Wang, K.L., Radetic, T., and Goorsky, M. S., Appl. Phys. Lett. 74, 1863 (1999).Google Scholar
[21] Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., and Beers, D. S., J. Appl. Phys. 35, 2899 (1964).Google Scholar
[22] Yang, B. and Chen, G., Microscale Thermophys. Eng. 5, 107 (2001).Google Scholar
[23] Brinson, M. E. and Dunstan, W., J. Phys. C: Solid St. Phys. 3, 483 (1970).Google Scholar
[24] Broido, D.A. and Reinecke, T.L., Appl. Phys. Lett. 77, 705 (2000).Google Scholar
[25] Shockley, W., Report No. Al-Tor-64-207, Air Force Atomic Laboratory, Wright-Patterson Air Force Base, Ohio, September 1964.Google Scholar
[26] Berger, H. H., Solid-state Electronics 15, 145 (1972).Google Scholar