Article contents
Crosslinking High Free Volume Polymers - Effect on Gas Separation Properties
Published online by Cambridge University Press: 01 February 2011
Abstract
Crosslinkable nanoparticle-filled poly(4-methyl-2-pentyne) [PMP] membranes were cast from carbon tetrachloride solutions containing PMP, hydrophobic fumed silica, and 4,4¡¯-(hexafluoroisopropylidene)diphenyl azide [HFBAA]. The composite membranes were crosslinked by UV irradiation at room temperature. Low levels of the bis azide were effective in rendering the membranes insoluble in cyclohexane and carbon tetrachloride, both good solvents for PMP. The process is simple and effective, and thus PMP can be easily converted to mechanically stable membranes. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all tested gases due to the crosslinking. By adding nanoparticles, the permeability is again increased, crosslinking is successful in maintaining the permeability and selectivity of PMP over time.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007
References
- 2
- Cited by