Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:08:18.086Z Has data issue: false hasContentIssue false

Crosslinking High Free Volume Polymers - Effect on Gas Separation Properties

Published online by Cambridge University Press:  01 February 2011

Lei Shao
Affiliation:
[email protected], Norwegian University of Science and Technology, Department of Chemical Engineering, Sem Sælandsvei 4, Trondheim, N-7491, Norway
Jon Samseth
Affiliation:
[email protected], SINTEF Materials and Chemistry, Trondheim, N - 7465, Norway
May-Britt Hagg
Affiliation:
[email protected], Norwegian University of Science and Technology, Department of Chemical Engineering, Trondheim, N - 7491, Norway
Get access

Abstract

Crosslinkable nanoparticle-filled poly(4-methyl-2-pentyne) [PMP] membranes were cast from carbon tetrachloride solutions containing PMP, hydrophobic fumed silica, and 4,4¡¯-(hexafluoroisopropylidene)diphenyl azide [HFBAA]. The composite membranes were crosslinked by UV irradiation at room temperature. Low levels of the bis azide were effective in rendering the membranes insoluble in cyclohexane and carbon tetrachloride, both good solvents for PMP. The process is simple and effective, and thus PMP can be easily converted to mechanically stable membranes. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all tested gases due to the crosslinking. By adding nanoparticles, the permeability is again increased, crosslinking is successful in maintaining the permeability and selectivity of PMP over time.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morisato, A., Pinnau, I., J. Membrane Sci., 121, 243250 (1996).Google Scholar
2. Merkel, T. C., Freeman, B. D., Spontak, R. J., He, Z., Pinnau, I., Meakin, P., Hill, A. J., Chem. Mater., 15, 109123 (2003).Google Scholar
3. Nagai, K., Sugawara, A., Kazama, S., Freeman, B. D., J. Polym. Sci.: Part B, 42, 24072418 (2004).Google Scholar
4. Jia, J., Baker, G. L., Journal of Polymer Science, Part B: Polymer Physics, 36, 959968 (1998).Google Scholar
5. Khotimsky, V. S., Matson, S. M., Litvinova, E. G., Bondarenko, G. N., Rebrov, A. I., Polym. Sci., Ser. A, 45(8), 740 (Russia, 2003).Google Scholar
6. Pinnau, I., Morisato, A., US Patent, 5,707,423 (1998).Google Scholar
7. Ling, C., Minato, M., Lahti, P. M., Willigen, H. van, J. Am. Chem. Soc. 114, 99599969 (1992).Google Scholar
8. Neenan, T. X., Kumar, U., and Miller, T. M., Polym. Prepr., ACS Div. Polym. Chem., 35, 391 (1994).Google Scholar
9. Reiser, A., Wagner, H. M., Marley, R., Bowes, G., Trans. Faraday Soc., 63, 3162 (1967).Google Scholar
10. O'Brien, K. C., Koros, W. J., Barbari, T. A., Sanders, E. S., J. Membr. Sci. 29, 229 (1986).Google Scholar
11. Lie, J. A., Ph.D Dissertation, Norwegian University of Science and Technology, Norway (2005).Google Scholar
12. Rolland, M., Bernier, P., Lefrannt, S., Aldissi, M., Polymer, 21, 1111 (1980).Google Scholar
13. Cernia, E., D'Ilario, L., Lupoli, M., Mantovani, E., Schwarz, M., Benni, P., Zanobi, A., J. Polym. Sci., 22, 33933399 (1984).Google Scholar
14. Merkel, T. C., Freeman, B. D., Spontak, R. J., He, Z., Pinnau, I., Meakin, A., Hill, A., J. Science, 296, 519 (2002).Google Scholar
15. Ghosal, K., Freeman, B. D., Polym. Adv. Technol., 5, 673697 (1994).Google Scholar