Article contents
Creep Properties of a High Niobium Containing γ-TiAl Alloy Sheet Material
Published online by Cambridge University Press: 11 February 2011
Abstract
In this study Ti-46Al-9Nb (at%) sheet material processed by a powder metallurgical route was examined. Subsequent to hot rolling the sheets were subjected to a stress-relief treatment at 1273K for 3 hours. During this heat treatment a fine-grained near gamma microstructure has been formed. 100 hours tensile creep tests under constant load were carried out at 700°C in rolling direction, transverse direction as well as 45° direction. Using the method of load changes a stress exponent of 4.1 was determined. Furthermore, the apparent activation energy was determined in the temperature range of 715 – 775°C. Both stress exponent and activation energy suggest that diffusion assisted dislocation climb is the dominant creep mode. A comparison of these results with those of so-called conventional or so-called “2nd generation” γ-TiAl based alloys, e.g. Ti-46.5Al-4(Cr,Nb,Ta,B) (at%) and Ti-47Al-4(Cr,Mn,Nb,Si,B) (at%), indicates a significantly better creep resistance and a higher activation energy of the high Nb containing alloy. Additionally, internal friction experiments were conducted in order to analyze the deformation behavior under very small strains at elevated temperatures.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 3
- Cited by