No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Two aspects of fast cracks are considered: 1. the terminal velocity, and corresponding relative kinetic energy; 2. the grain size dependence of the fracture. It is argued that this is determined by the kinetic energies of cracks when they have expanded enough to reach the boundaries of the grains in which they lie. This is more consistent with the observed facts than the more usual quasi-static models.
By considering the limiting conditions at the very tip of a moving crack, many complications are avoided in calculating the terminal velocity. The maximum transverse acceleration of material is limited by the maximum stress (cohesive) that can be applied. The resulting terminal velocity is: 0.4 vs, where vs is the longitudinal sound speed; compared with measured values which average about: 0.31 vs.
In polycrystals, microcracks are found when the applied stress exceeds the yield stress. However, the microcracks do not propagate in fine-grained specimens because they do not have enough kinetic energy to cross a typical grain boundary. This leads to the observed dependence of the fracture stress on the grain size.