Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T01:42:37.205Z Has data issue: false hasContentIssue false

Covalent immobilization of DNA and hybridization on microchips by microsecond electric field pulses

Published online by Cambridge University Press:  15 March 2011

F. Fixe
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
H.M. Branz
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal National Renewable Energy Laboratory, Golden, CO, USA
D.M.F. Prazeres
Affiliation:
Center for Biological & Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal
J.P. Conde
Affiliation:
INESC Microsistemas e Nanotecnologias, Lisbon, Portugal Department of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
Get access

Abstract

Single square voltage pulses were used to enhance by 7 and 9 orders of magnitude the rate of covalent immobilization and hybridization, respectively, of single stranded DNA probes on a chemically functionalized thin film surface (silicon dioxide) using 2 mm size electrodes. These electrodes were scaled down to 20 μm. Photolithography was used to define the electrode voltage line, ground line, and functionalized thin-film area on a plastic substrate (polyimide). At all electrode dimensions, electric field-assisted DNA immobilization and hybridization can be achieved in the microsecond time scale, far faster than the 2 hr or 16 hr needed for immobilization and hybridization, respectively, without the electric field. Pulse conditions optimized with the large-size electrodes (2 mm) were used in the microelectrodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ramsay, G. (1998), Nature Biotechnol., 16, 4044.Google Scholar
2. Marshall, A. & Hodgson, J. DNA chips: an array of possibilities, Nature Biotechnol., 16, 27 (1998).Google Scholar
3. Southern, E., Mir, K. & Shchepinov, M. Nature Genet., 21 (Suppl.), 5 (1999).Google Scholar
4. Edman, C.F., Raymond, D.E., Wu, D.J., Tu, E., Sosnowski, R.G., Butler, W.F., Nerenberg, M. and Heller, M.J., Nucl. Acids Res. 25, 4907 (1997).Google Scholar
5. Lenigk, R., Carles, M., Ip, N.Y. and Sucher, N.J., Langmuir 17, 2497 (2000);Google Scholar
6. Joos, B., Kuster, H. and Cone, R., Anal. Biochem. 247, 96 (1997);Google Scholar
7. Rogers, Y., Baucom, P. J., Huang, Z.J., Bogdanov, V., Anderson, S. and Jacino, M.T., Anal.Biochem. 266, 23 (1999);Google Scholar
8. Strother, T., Cai, W., Zhao, X., Hamers, R.J. and Smith, L.M., J. Am. Chem. Soc. 122, 1205 (2000).Google Scholar
9. Chrisey, L.A., O'Ferrall, C.E., Spargo, B.J., Dulcey, C.S. and Calvert, J.M., Nucl. Acids Res. 15: 3040 (1996).Google Scholar
10. Chrisey, L.A., Lee, G.U. and O'Ferrall, C.E., Nucl. Acids Res. 15: 3031 (1996).Google Scholar
11. Okamoto, T., Suzuki, T. and Yamamoto, N., Nature Biotechnol., 18, 438 (2000).Google Scholar
12. Sosnowski, R.G., Tu, E., Butler, W.F., O'Connell, J.P. and Heller, M.J., PNAS 94, 1119 (1997);Google Scholar
13. Radtkey, R., Feng, L., Muralhidar, M., Melaine, D., Canter, D., DiPierro, D., Fallon, S., Tu, E., McElfresh, K., Nerenberg, M. and Sosnowski, R., Nucl. Acids Res. 28, (2000) e17.Google Scholar
14. Heaton, R.J., Peterson, A.W., Georgiadis, R.M., PNAS. 98, 37013704, (2001).Google Scholar
15. Fixe, F., Cabeca, R., Chu, V., Ferreira, G.N.M., Prazeres, D.M.F., Conde, J.P., Appl. Phys. Lett. 83, 14651467, (2003).Google Scholar
16. Fixe, F., Branz, H., Louro, N., Chu, V., Prazeres, D. M. F., Conde, J. P., Biosens. Bioelectron., xx, xx–xx (2004).Google Scholar
17. Fixe, F., Faber, A., Gonçalves, D., Prazeres, D.M.F., Cabeça, R., Chu, V., Ferreira, G. and Conde, J.P., Mat. Res. Soc. Symp. Proc. 723, O2.3.1 (2002).Google Scholar
18. Fixe, F., Branz, H.M., Prazeres, D.M.F., Chu, V., and Conde, J.P., Mat. Res. Soc. Symp. Proc. 773, N10.5.1 (2003).Google Scholar
19. Balladur, V., Theretz, A. and Mandrand, B., J. Colloid Interface Sci. 194, 408418 (1997).Google Scholar