Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:37:02.346Z Has data issue: false hasContentIssue false

Coupling of Length Scales: Hybrid Molecular Dynamics and Finite Element Approach for Multiscale Nanodevice Simulations

Published online by Cambridge University Press:  21 March 2011

Elefterios Lidorikis
Affiliation:
Concurrent Computing Laboratory for Materials Simulations and Biological Computation & Visualization Center, Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803, USA
Martina E. Bachlechner
Affiliation:
Concurrent Computing Laboratory for Materials Simulations and Biological Computation & Visualization Center, Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803, USA
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations and Biological Computation & Visualization Center, Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803, USA
George Z. Voyiadjis
Affiliation:
Advanced Computational Solid Mechanics Laboratory, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations and Biological Computation & Visualization Center, Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803, USA
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations and Biological Computation & Visualization Center, Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, LA 70803, USA
Get access

Abstract

A hybrid molecular-dynamics/finite-element simulation scheme is applied to describe multiscale phenomena in nanodevices. The quality of both static and dynamic coupling between atomistic and continuum regions is studied. The hybrid scheme is used for the Si/Si3N4 interface problem (static coupling), and for the projectile impact on Si problem (dynamic coupling). Excellent agreement is found between hybrid and full molecular dynamics simulation results in the static case, and no wave reflections are found at the atomistic/continuum hand-shake in the dynamic case. The hybrid scheme is thus validated a powerful and cost effective method for performing multiscale simulations of nanodevices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, F., Wu, F., and Lagally, M.G., Chem. Rev. 97,1045 (1997).Google Scholar
2. Fonzo, S. Di et al. , Nature 403, 638 (2000).Google Scholar
3. Zhuang, Y. et al. ., Strain relaxation in period arrays of Si/SiGe quantum wires determined by coplanar high-resolution x-ray diffraction and grazing incidence diffraction (IOP Publishing,1999) p. 224.Google Scholar
4. Zhang, Z. and Lagally, M. G., Phys. Rev. Lett. 72, 693 (1994).Google Scholar
5. , Madhukar, J. Crystal Growth 163, 149 (1996).Google Scholar
6. Jain, S. C. et al. , J. Appl. Phys. 78, 1630 (1995).Google Scholar
7. Johnson, T. and Freund, L. B., J. Appl. Phys. 81, 6081 (1997).Google Scholar
8. Geubelle, P. H. and Rice, J. R., J. Mech. Phys. Solids 43, 1791 (1995); J. W. Morrissey and J. R. Rice, J. Mech. Phys. Solids 46, 467 (1998).Google Scholar
9. , Needleman, Acta mater. 48, 105 (2000).Google Scholar
10. Voyiadjis, G.Z. and Deliktas, B., Mech. Research Comm. 27, 295 (2000).Google Scholar
11. Bachlechner, M. E. et al. , Appl. Phys. Lett. 72, 1969 (1998); A. Omeltchenko et al., Phys. Rev. Lett. 84, 318 (2000).Google Scholar
12. Tadmor, E. B., Ortiz, M. and Phillips, R., Philos. Mag. A 73, 1529 (1996).Google Scholar
13. Shenderova, O. A., Brenner, D. W, Nazarov, A. A., Romanov, A. E., and Yang, L. H., Phys. Rev. B 57, R3181 (1998).Google Scholar
14. Rudd, R.E. and Broughton, J. Q., Phys. Rev. B 58, R5893 (1998); Phys. Stat. Sol. (b) 217, 251 (2000).Google Scholar
15. Mullins, M. and Dokainish, M. A., Philos. Mag. A 46, 771 (1982).Google Scholar
16. Kohlhoff, S., Gumbsch, P. and Fischmeister, H. F., Philos. Mag. A 64, 851 (1991).Google Scholar
17. Abraham, F. F., Broughton, J. Q., Bernstein, N., and Kaxiras, E., Computers in Physics 12, 538 (1998).Google Scholar
18. Stillinger, F.H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
19. Vashishta, P. et al. ., in Amorphous Insulators and Semiconductors, edited by Thorpe, M.F. and Mitkova, M. I., ATO ASI, Vol. 23 (Kluwer, Dordrecht, 1997).Google Scholar
20. Zhao, G. L. and Bachlechner, M. E., Phys. Rev. B 58, 1887 (1998).Google Scholar