Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:42:06.089Z Has data issue: false hasContentIssue false

The Coupling Model: A Fundamental Mechanism Governing Time Dependent Properties of Relaxations, Structural Recovery and Nonlinear Viscoelasticity

Published online by Cambridge University Press:  26 February 2011

R. W. Rendell
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
K. L. Ngai
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5000
A. F. Yee
Affiliation:
The University of Michigan, Department of Materials and Metallurgical Engineering, Ann Arbor, MI 48109-2136
Get access

Abstract

The recent renewal of interest in the time dependent response of complex material systems stems both from their increasing importance and from recent advances in theoretical tools and concepts. This paper describes one of these advances, the coupling model of relaxation. The coupling model proposes a view of how relaxation proceeds in time in which a primitive relaxation mode is coupled to its complex surroundings. Examples of the coupling model predictions for terminal relaxations, primary-segmental relaxations including physical aging, and secondary relaxations in polymers are described. It is able to confront and quantitatively explain several long-standing problems and anomalies for which traditional approaches, in their present form, such as distributions of relaxation times, free volume, configuration entropy and reptation are not successful. The coupling model response function is also appropriate for structural nonequilibrium and its predictions for volume recovery are described. The same coupling model response function is used as a timedependent kernal in a constitutive equation to discuss nonlinear viscoelasticity. The model incorporates the strain history dependence and allows for the evolution of material structure. Using information from strain-tickle experiments on polycarbonate and polyetherimide, we show that the coupling model reproduces the essential features observed experimentally for a variety of strain histories.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ngai, K.L., Comments Solid State Phys. 9, 127 (1979); 9, 141 (1980.Google Scholar
2. Rajagopal, A.K., Ngai, K.L., and Teitler, S., J. Phys. C17, 6611 (1984).Google Scholar
3. Rendell, R.W. and Ngai, K.L. in Relaxations in Complex Systems, (U.S. Government Printing Office, Washington, DC, 1985) pp. 309345. Available upon request.Google Scholar
4. Ngai, K.L., Rajagopal, A.K. and Teitler, S., Physica 133A, 213 (1985); A. K. Rajagopal, K. L. Ngai and S. Teitler, Physica 137A, 359 (1986).Google Scholar
5. Ngai, K.L., Rajagopal, A.K., Rendell, R.W. and Teitler, S., IEEE Trans. Electr. Insul. E121, 313 (1986).CrossRefGoogle Scholar
6. Ngai, K.L., Rendell, R.W., Rajagopal, A.K. and Teitler, S., Annals New York Academy of Sciences, in press (1987).Google Scholar
7. Yee, A.F., Bankert, R.J., Rendell, R.W. and Ngai, K.L., in Proceedings of the 9th International Conqress of Rheology, Acapulco, Mexico, eds. Meno, B., Garcia-Rejon, A. and Rangel-Nafaile, C., 3, 231 (1984).Google Scholar
8. Bankert, R.J. and Yee, A.F., “Strain and Temperature Accelerated Relaxation” in Polycarbonate” (unpublished).Google Scholar
9. Rendell, R.W., Ngai, K.L., Fong, G.R., Yee, A.F., and Bankert, R.J., Polym. Eng. Sci., in press (1987).Google Scholar
10. Oppenheim, I., Shuler, K.E. and Weiss, G.H., Stochastic Processes in Chemical Physics: The Master Equation (M.I.T. Press, Cambridge, 1977).Google Scholar
11. Lichtenberg, A.J. and Lieberman, M.A., Regular and Stochastic Motion (Springer-Verlag, New York, 1983).Google Scholar
12. Rendell, R.W. and Ngai, K.L. (unpublished).Google Scholar
13. See discussion in Refs. 5, 6.Google Scholar
14. Ngai, K.L. and Rendell, R.W., Polym. Prepr. Am. Chem. toc. Div. Polym. Chem. 23, 46 (1982).Google Scholar
15. Ngai, K.L. and Plazek, D.J., J. Polym. Sci.: Polym. Physics Ed. 23, 2159 (1985).Google Scholar
16. McKenna, G.B., Ngai, K.L. and Plazek, D.J., Polymer 26, 1651 (1985).CrossRefGoogle Scholar
17. Ngai, K.L. and Plazek, D.J., J. Polym. Sci.: Part B: Polym. Phys. 24, 619 (1986).Google Scholar
18. Plazek, D.J., Ngai, K.L. and Rendell, R.W., Polym. Eng. Sci. 24, 1111 (1984).Google Scholar
19. Ngai, K.L. and Fytas, G., J. Polym. Sci.: Part B: Polym. Rhys. 24, 1683 (1986).Google Scholar
20. Spiess, H.W., Adv. Polym. Sci. 66, 23 (1985).Google Scholar
21. Jones, A.A., O'Gara, J.F., Inglefield, P.T., Bendler, J.T. and Ngai, K.L., Macromolecules 16, 658 (1983); K.L. Ngai, R.W. Rendell and A.F. Yee (unpublished).Google Scholar
22. Rendell, R.W., Aklonis, J.J., Ngai, K.L. and Fong, G.R., Macromolecules, in press (1987).Google Scholar
23. Kovacs, A.J., Fortschr. Hochpolym.-Forsch. 3, 394 (1963).Google Scholar
24. Ward, I.M., Mechanical Properties of Solid Polymers, 2nd ed. (John Wiley and Sons, New York 1983).Google Scholar