Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-09T08:38:52.568Z Has data issue: false hasContentIssue false

Coupling between order parameter and compositional fluctuations in the irradiation induced monoclinic to tetragonal phase transition in pure zirconia.

Published online by Cambridge University Press:  01 February 2011

D Simeone
Affiliation:
Laboratoire d'Analyse Microstructurale des Matériaux, DMN/SRMA, CEA/Saclay F-91191 Gif sur Yvette, France.
G Baldinozzi
Affiliation:
Laboratoire d'Analyse Microstructurale des Matériaux, DMN/SRMA, CEA/Saclay F-91191 Gif sur Yvette, France.
D. Gosset
Affiliation:
Laboratoire d'Analyse Microstructurale des Matériaux, DMN/SRMA, CEA/Saclay F-91191 Gif sur Yvette, France.
M. Dutheil
Affiliation:
Laboratoire d'Analyse Microstructurale des Matériaux, DMN/SRMA, CEA/Saclay F-91191 Gif sur Yvette, France.
Get access

Abstract

Zirconia, oxidation product of Zircaloy cladding elements of nuclear plants, exhibits an unusual behaviour under irradiation. Impinging ions and neutrons induce a monoclinic to tetragonal phase transition at room temperature in this solid. To understand this modification of the positions of the stability lines in such a solid under irradiation, we have studied the monoclinic to tetragonal first order phase transition versus temperature in pure micrometric and nanometric zirconia samples. From these works, it was possible to understand the behaviour of this material under irradiation pointing out the key role of defects induced irradiation on its phase diagram.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Simeone, D., Béchade, J.L., Gosset, D., Chevarier, A., Daniel, P., Pilliaire, H., Baldinozzi, G., J. Nucl. Mater. 281, 171 (2000).Google Scholar
[2] Kisi, E., Howard, C., Key Eng. Mat. 153–154, 1 (1998).Google Scholar
[3] Sickafus, K., Matzke, H., Hortmann, T., Yasuda, K., Valdez, J., Chodak, P., Nastasi, H., Verrall, R., J. Nucl. Mater. 274, 66 (1999).Google Scholar
[4] Simeone, D., Bechade, J.L., Gosset, D., Chevarier, A., J. Nucl. Mater. 300, 27 (2002).Google Scholar
[5] Katamura, J., Sakuma, T., Acta Mater. 46, 1569 (1998).Google Scholar
[6] Schelling, P., Phillipot, S., Wolf, D., J. Am. Ceram. Soc. 84, 1609 (2001).Google Scholar
[7] Hueur, A., Ruhle, M., Acta Mettal. 12, 1201 (1985).Google Scholar
[8] Simeone, D., Baldinozzi, G., Gosset, D., Dutheil, M., Bulou, A., Hansen, T., Phys. Rev. B 67, 64111 (2003).Google Scholar
[9] Negita, K., Takao, H., J. Phys. Chem. Solids 50, 1325 (1989).Google Scholar
[10] Simeone, D., Baldinozzi, G., Gosset, D., Lecare, S., submitted to Phys. Rev. Lett.Google Scholar
[10] Garvie, R., J. Phys. Chem. 69, 1283 (1965).Google Scholar
[11] Baldinozzi, G., Simeone, D., Gosset, D., Dutheil, M., Phys. Rev. Lett. 90(21), 216103 (2003).Google Scholar
[12] Foster, A., Sulimov, V., Lopez-Gejo, F., Schulger, A., Xieminen, R., Phys. Rev. B 64, 224108 (2001).Google Scholar