Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-24T12:54:13.462Z Has data issue: false hasContentIssue false

Coupling and Cooperative Up-conversion Coefficients in Er-doped Si Nanocrystals

Published online by Cambridge University Press:  10 February 2011

Domenico Pacifici
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Via Santa Sofia 64, I-95123 Catania, Italy
Giorgia Franzò
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Via Santa Sofia 64, I-95123 Catania, Italy
Fabio Iacona
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Via Santa Sofia 64, I-95123 Catania, Italy
Francesco Priolo
Affiliation:
INFM and Dipartimento di Fisica e Astronomia, Via Santa Sofia 64, I-95123 Catania, Italy
Get access

Abstract

In the present work, a quantitative understanding of the Er-doped Si nanocrystals interaction is reported. We present a model based on an energy level scheme taking into account the coupling between each Si nanocrystal and the neighboring Er ions. By fitting the steady state and time resolved luminescence signals at both the 1.54 and 0.98 μm Er lines we were able to determine a value of 3×10-15 cm3 s-1 for the coupling coefficient. Moreover, a strong cooperative up-conversion mechanism, active between two excited Er ions and characterized by a coefficient of 7×10-17 cm3 s-1, will be shown to be active in the system, demonstrating that each Si nanocrystal can actually excite more than one Er ion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kenyon, A. J., Trwoga, P. F., Federighi, M., and Pitt, C. W., J. Phys.: Condens. Matter 6, L319 Google Scholar
3. Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K., Appl. Phys. Lett. 71, 1198 (1997).Google Scholar
4. Franzò, G., Vinciguerra, V., and Priolo, F., Appl. Phys. A: Mater. Sci. Process. 69, 3 (1999).Google Scholar
5. Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A., J. Appl. Phys. 89, 264 (2001).Google Scholar
6. Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Priolo, F., Appl. Phys. Lett. 76, 2167 (2000).Google Scholar
7. Kik, P. G., Brongersma, M. L., and Polman, A., Appl. Phys. Lett. 76, 2325 (2000).Google Scholar
8. Seo, S. Y., and Shin, J. H., Appl. Phys. Lett. 78, 2709 (2001).Google Scholar
9. Watanabe, K., Fujii, M. and Hayashi, S., J. Appl. Phys. 90, 4761 (2001).Google Scholar
10. Han, H. S., Seo, S. Y., Shin, J. H., and Park, N., Appl. Phys. Lett. 81, 3720 (2002)Google Scholar
11. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzò, G., Priolo, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 3242 (2002)Google Scholar
12. Pacifici, D. et al., accepted for publication on Phys. Rev. BGoogle Scholar
13. Kobitski, A.Yu., Zhuravlev, K. S., Wagner, H. P., and Zahn, D. R. T., Phys. Rev. B 63, 115423 (2001).Google Scholar
14. Wölkin, M. V., Jorne, J., Fauchet, P. M., Allan, G. and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar