Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:40:32.097Z Has data issue: false hasContentIssue false

Corrosion Resistant Coatings for High Temperature Applications

Published online by Cambridge University Press:  10 February 2011

T. M. Besmann
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-60603
J. A. Haynes
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-60603
K. M. Cooley
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-60603
V. M. Vaubert
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-60603
W. Y. Lee
Affiliation:
Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030
Get access

Abstract

Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of highertemperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacobson, N S., J. Am. Ceram. Soc. 76 (1), p. 3 (1993).Google Scholar
2. Pickrell, G. R., Sun, T., Brown, J. J., Fuel Proc. Tech. 44, p. 213 (1995).Google Scholar
3. Fox, D. S., Nitride, J. L. Smialek,” J. Am. Ceram. Soc 73 (2) p. 303 (1990).Google Scholar
4. Richerson, D. W., Modem Ceramic Engineering, Marcel Dekker, New York, 1992, p. 147.Google Scholar
5. Auger, M. L. and Sarin, V. K., Surf. Coat. Tech. 94–95 p. 46 (1997).Google Scholar
6. Lee, K. N. and Miller, R. A., Surf. Coat. Tech. 86–87 p. 142 (1996).Google Scholar
7. Jacobson, N. S. and Lee, K. N., J. Am. Ceram. Soc. 79 [;8] p. 2162 (1996).Google Scholar
8. Hagman, L. O. and Kierkegaard, P., Acta Chem. Scand. 22 p. 1822 (1968).Google Scholar
9. Roy, R., Agrawal, D. K., Alamo, J. and Roy, R.A., Mater. Res. Bul. 19, p. 471 (1984).Google Scholar
10. Li, T. K., Hirschfeld, D. A., VanAken, S., Yang, Y. P. and Brown, J. J., J. Mater. Res. 8, p. 2954 (1993).Google Scholar
11. Li, T. K., Hirschfeld, D. A., and Brown, J. J., J. Mater. Res. 9, p. 2004 (1994).Google Scholar
12. Limaye, S. Y., Agrawal, D. K., and McKinstry, H. A., J. Am. Ceram. Soc. 70, p. C232 (1987).Google Scholar
13. Kang, M., “Alkali/Steam Corrosion Resistance of Commercial SiC Products Coated with Sol-Gel Deposited Mg-Doped AI2TiO5 and Cao.6MgO.4Zr4(PO4)6” Masters Thesis, Virginia Polytechnic Institute and State University, 1994.Google Scholar
14. Lee, W. Y., Cooley, K. M., Berndt, C. C., Joslin, D. L. and Stinton, D. P., J. Am. Cer. Soc. 79 [10], p. 2759 (1996).Google Scholar
15. Lee, W. Y., Stinton, D. P., and Joslin, Debra L., J. Am. Ceram. Soc. 79 [2], p. 484 (1996).Google Scholar
16. Haynes, J. A., Cooley, K. M., Stinton, D. P., Lowden, R. A., Cer. Eng. Sci. Proc., in press.Google Scholar
17. Besmann, T. M., Lee, W. Y., Young, J. P., and Xiao, H., in Covalently Bonded Disordered Thin-Film Materials, edited by M. P. Siegal, J. E. Jaskie, W. Milne, and D. McKenzie (Mater. Res. Soc. Proc. 498, Warrendale, PA 1998).Google Scholar