Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:39:04.266Z Has data issue: false hasContentIssue false

Corrosion Behavior of Rapidly Solidified Fe-Ti-P Alloys With Cu, Cr, and B Additions

Published online by Cambridge University Press:  21 February 2011

C. R. Shastry
Affiliation:
Sheet Steels and Coated Products Division, Research Department, Bethlehem Steel Corporation, Bethlehem, PA 18016;
R. M. Latanision
Affiliation:
H. H. Uhlig Corrosion Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.
H. E. Townsend
Affiliation:
Sheet Steels and Coated Products Division, Research Department, Bethlehem Steel Corporation, Bethlehem, PA 18016;
Get access

Abstract

Rapidly solidified ribbons of Fe67Ti13P(20-x)Bx (x= 0, 7, 20 a/o) and Fe(85-y)Ti l5Py (y=5, 10 a/o) alloys were produced by melt spinning, and their structure and anodic polarization behavior were examined by x-ray diffraction and potentio-dynamic polarization measurements in deaerated 1 N H2SO4, respectively. The only alloy that developed an amorphous structure on rapid solidification, Fe67Ti13B20, exhibited poor corrosion resistance, whereas crystalline alloys with 10 a/o or more P exhibited a tendency to passivate during anodic polarization. Substituting Cr for Ti led to significant improvement in corrosion resistance and promoted development of glassy structures in Fe67(TiCr)13P13B7 compositions. No such improvements were observed when Cu was substituted for Ti. It is concluded that alloy composition is more important than degree of crystallinity in determining corrosion resistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Naka, M., Hashimoto, K. and Masumoto, T., Sci Rep Res Inst, Tohoku Univ, vol A26, (1977), p 283.Google Scholar
2. Naka, M., Hashimoto, K. and Masumoto, T., J. Japan Inst Metals, vol 38, (1974), pp 835841.10.2320/jinstmet1952.38.9_835Google Scholar
3. Naka, M., Hashimoto, K. and Masumoto, T., J. Noncrystalline Solids, vol 29, (1978) pp 6165.10.1016/0022-3093(78)90140-0Google Scholar
4. Asami, K., Hashimoto, K., Masumoto, T. and Shimodaira, S., Corrosion Sci, vol 16, (1976) pp 909914.10.1016/S0010-938X(76)80010-8Google Scholar
5. Asami, K., Hashimoto, K. and Shimodaira, S., Corrosion Sci, vol 18, (1978) pp 151160.10.1016/S0010-938X(78)80085-7Google Scholar
6. Masumoto, T. and Hashimoto, K. and Naka, M., Rapidly Quenched Metals III, vol 2, Edited by Cantor, B., The Metals Society, London, (1978) p 435.Google Scholar
7. Hashimoto, K., Asami, K., Naka, M. and Masumoto, T., Corrosion Sci, vol 19, (1979) pp 857867.10.1016/S0010-938X(79)80109-2Google Scholar
8. Hashimoto, K., Osada, K., Masumoto, T. and Shimodaira, S., Corrosion Sci, vol 16, (1976), pp 7176.10.1016/0010-938X(76)90031-7Google Scholar
9. Naka, M., Hashimoto, K. and Masumoto, T., J. Noncrystalline Solids, vol 31, (1979) p 355.10.1016/0022-3093(79)90148-0Google Scholar
10. Naka, M., Hashimoto, K. and Masumoto, T., J. Noncrystalline Solids, vol 30, (1978) pp 2936.10.1016/0022-3093(78)90053-4Google Scholar
11. Hashimoto, K. and Masumoto, T., Materials Science and Engineering, vol 23, (1976) pp 285288.10.1016/0025-5416(76)90210-XGoogle Scholar
12. Polk, D. E. and Giessen, B. C.. “Metallic Glasses”, Edited by Gilman, J. J. and Leamy, H. J., ASM, Ohio (1978) p 19.Google Scholar
13. Polk, D. E. and Morris, R. C., U.S. Patent No. Re 29,989, May 8, (1979)Google Scholar
14. Diegle, R. B. and Slater, J. E., Corrosion, vol 32, No. 4, April (1976), pp 155157.10.5006/0010-9312-32.4.155Google Scholar
15. Scott, M., “Rapidly Quenched Metals III,” vol. 1, Edited by Cantor, B., The Metals Society, London (1978), p 199.Google Scholar
16. Davies, H. A., “Rapidly Quenched Metals III”, vol 1, Edited by Cantor, B., The Metals Society, London (1978), pp 122.Google Scholar
17. Milam, E. E., Crow, W. B. and Myers, J. R., Corrosion, vol 33, no 7, (1977), p 242.10.5006/0010-9312-33.7.240Google Scholar
18. Prazak, M., Proc of Third Intl Cong on Metallic Corrosion, Moscow, (1969) pp 339340.Google Scholar
19. Naka, M., Hashimoto, K. and Masumoto, T., J. Noncrystalline Solids, vol 28 (1978) pp 403413.10.1016/0022-3093(78)90090-XGoogle Scholar
20. Baer, D. R. and Thomas, M. T., J. Vac. Sci. Technol., vol. 18, (1981), p 722.10.1116/1.570935Google Scholar
21. Sorensen, N. R., Hunkler, S. J. and Latanision, R. M., Corrosion (in press).Google Scholar
22. Sato, N., Noda, T. and Kudo, K., Proc of the Fifth Intl Cong on Metallic Corrosion, NACE, Houston,(1974), p 22 and also J. E. O. Mayne on p 205.Google Scholar
23. Levin, E. M., Robins, C. R. and McMurdie, H. W., “Phase Diagrams for Ceramists” The American Ceramic Society, Columbus, Ohio (1964) pp 7273.Google Scholar