Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:12:52.551Z Has data issue: false hasContentIssue false

Correlations Between the Cu‐O Bonding States and the Superconductivity ‐ an Xps Investigation

Published online by Cambridge University Press:  28 February 2011

S.C. Han
Affiliation:
Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, China Xsirius Superconductivity, Inc., 7590 E. Gray Road, Suite 103, Scottsdale, AZ 85260
D.Z. Liu
Affiliation:
Shanghai Institute of Testing Technology, Shanghai, China
X.M. Xie
Affiliation:
Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, China
Z.L. Wu
Affiliation:
Shanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, China
G.C. Huth
Affiliation:
Xsirius Superconductivity, Inc., 7590 E. Gray Road, Suite 103, Scottsdale, AZ 85260
Get access

Abstract

Auger electron spectroscopy (AES) and core‐level x‐ray photoelectron spectroscopy (XPS) have been used to study the compositional and electronic‐state variations from the contaminated surface layer to the inner region of YBa2Cu3Ox and Bi2(Sr,Ca)n+1Cun02n+4 compounds. The results showed that the carbon‐rich contamination layer in BSCCO is thin and easier to be removed by Ar+ sputtering, indicating a much more stable surface than that of YBCO. This layer is oxygen deficient and contains higher Cu2+ satellites ( 2p3d9 final states) than in the bulk materials. Line‐shape analysis suggests three‐Gaussian features for both Cu 2p3/2 and O Is lines. The 529 eV signal is observed in both YBCO and BSCCO O Is spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Bednorz, J.G. and Müller, A.K., Z. Phys. B 64. 189 (1986).Google Scholar
2 Anderson, P.W., Science 235, 1196 (1986).Google Scholar
3 Emery, V., Phys. Rev. Lett. 58, 2794 (1987).Google Scholar
4 Hirsch, J.E., Phys. Rev. Lett. 59, 228 (1987).Google Scholar
5 Schrieffer, J.R., Wen, X.G., and Zhang, S.C., Phys. Rev. B 39. 11663 (1989).Google Scholar
6 Fujimori, A.,Takayama‐Muramachi, E.,Uchida, Y., and Okai, B.,Phys.Rev. B 35,8814(1987).Google Scholar
7 Bianconi, A., Conjiu Castellano, A., De Santis, M., Delogu, P., Gargano, A., and Giorgi, R., Sol. Stat. Commun. 63, 1135 (1987).Google Scholar
8 Sarma, D.D., Sreedhar, K., Ganguly, P., and Rao, C.N.R., Phys. Rev. B 36. 2371 (1987).Google Scholar
9 Dauth, B., Kachel, T., Sen, P., Fisher, K., and Campagna, M., Z. Phys. B68.407 (1988).Google Scholar
10 Nücker, N., Fink, J., Fuggle, J.C., Durham, P.J.,and Temmermen, W.M., Phys. Rev. B 37. 5158(1988).Google Scholar
11 Steiner, P., Hufner, S., Kinsinger, V., Sander, I., Siegwart, B., Schmitt, H., Schulz, R., Junk, S., Schwitzgeble, G., Gold, A., Politis, C., Muller, H.P., Hoppe, R., Kemller‐Sack, S., and Kunz, C., Z. Phys. B 69. 449 (1988).Google Scholar
12 List, R.S., Arko, A.J., Fisk, Z., ‐W.Cheong, S., Conradson, S.D., Thompson, J.D., Pierce, C.B., Peterson, D.E., Barlett, R.J., Shinn, N.D., Schirber, J.E., Veal, B.W., Paulikas, A.P., and Campuzano, J.C., Phys. Rev. B 38. 11967 (1988).Google Scholar
13 Arko, A.J.,List, R.S., Bartlett, R.J., Cheong, S‐W., Fist, Z., Thompson, J.D., Olson, C.G., Yang, A‐B., Liu, R., Gu, C., Veal, B.W., Liu, J.Z., Paulikas, A.P., Vandervoort, K., Claus, H., Campuzano, J.C., Schirber, J.E., and Shinn, N.D., Phys. Rev. B 40. 2268 (1989).Google Scholar