Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T09:25:57.139Z Has data issue: false hasContentIssue false

Correlation of Void Formation with the Reduction of Carrier Activation and Anomalous Dopant Diffusion in Si-Implanted GaAs

Published online by Cambridge University Press:  25 February 2011

Kei-Yu Ko
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
Samuel Chen
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
S. -Tong Lee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
Longru Zheng
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650
T.Y. Tan
Affiliation:
Dept. of Mechanical Eng. and Materials Sci., Duke Univ., Durham, NC 22706, and Microelectronics Center of North Carolina, Research Triangle Park, NC 27709
Get access

Abstract

We report the study of high-dose Si-implanted GaAs containing doses ranging from 1×1014 to 1×1015 cm-2 and with subsequent anneals at 850°C for 1 hour. At doses ≥ 3×1014 cm-2, a severe reduction of carrier concentration and anomalous Si diffusion are observed in the near-surface region. In the same region, small, near-spherical voids are found by transmission electron microscopy. In contrast, for samples implanted with doses ≤ 1×1014 cm-2, voids are not found, and both normal carrier activation and Si diffusion profiles are observed. The concurrent onset of these three phenomena in the same region in high-dose samples leads us to conclude that the severe reduction of carrier concentration and anomalous Si diffusion are attributable to the formation of voids.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yeo, Y. K., Hengehold, R. L., Kim, Y. Y., Ezis, A., Park, Y. S., and Ehret, J. E., J. Appl. Phys. 58, 4083 (1985).Google Scholar
2 Liu, S. G., Douglas, E. C., Wu, C. P., Magee, C.W., Narayan, S. Y., Jolly, S. T., Kolondra, F., and Jain, S., RCA Rev. 41, 227 (1980).Google Scholar
3 Masuyama, A., Nicolet, M-A., Golecki, I., Tandon, J. L., Sadana, D. K., and Washburn, J., Appl. Phys. Lett. 36, 749 (1980).Google Scholar
4 Bhattacharya, R. S., Rai, A. K., Yeo, Y. K., Pronko, P. P., Ling, S. C. Wilson, S. R., and Park, Y. S., J. Appl. Phys. 54, 2329 (1983).Google Scholar
5 Tandon, J. L., Nicolet, M-A., Eisen, F. H., Appl. Phys. Lett. 34, 165 (1979).Google Scholar
6 Tiku, S. K. and Duncan, W. M., J. Electrochem. Soc. 132, 2237 (1985).Google Scholar
7 Skolnik, L. H., Spitzer, W. G., Kahan, A., Euler, F., and Hunsperger, R. G., J. Appl. Phys. 43, 2146 (1972).Google Scholar
8 Rai, A. K., Bhattacharya, R. S., and Pronko, P. P., Appl. Phys. Lett. 41, 1086 (1982).Google Scholar
9 Chen, S., Lee, S.-Tong., Braunstein, G., and Tan, T. Y., Appl. Phys. Lett. 55 , 1194 (1989).Google Scholar
10 Deppe, D. G., Holonyak, N. Jr., Kish, F. A., and Baker, J. E., Appl. Phys. Lett. 50, 998 (1987).Google Scholar
11 Yu, S., Gosele, U. M., and Tan, T. Y., J. Appl. Phys. 66, 2952 (1989).Google Scholar