Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T01:50:50.907Z Has data issue: false hasContentIssue false

Correlation between the Susceptibility to Breakdown and Surface Properties of Thin Films on Titanium Alloys in Physiological Fluids

Published online by Cambridge University Press:  15 February 2011

Agustin Santana Lopez
Affiliation:
Las Palmas de Gran Canaria University, Despacho 11, 35017 Tafira, Gran Canaria, Spain.
Julia Mirza-Rosca
Affiliation:
Las Palmas de Gran Canaria University, Despacho 11, 35017 Tafira, Gran Canaria, Spain.
Mihai V. Popa
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania.
Ioana Demetrescu
Affiliation:
Politehnica University, Str. Polizu nr.1, 78126 Bucharest, Romania.
Ecaterina Vasilescu
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania.
Paula Drob
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania.
Cora Vasilescu
Affiliation:
Institute of Physical Chemistry, Spl. Independentei 202, 77208 Bucharest, Romania.
Daniela Ionita
Affiliation:
Politehnica University, Str. Polizu nr.1, 78126 Bucharest, Romania.
Get access

Abstract

Correlation between the susceptibility to breakdown and surface properties of thin films on implant titanium alloys Ti-5Al-4V and Ti-6Al-4Fe in Ringer 1 and Ringer 2 solutions of different pH values (6.98, 4.35, 2.5) which simulate the conditions that can appear at the longterm (13,000 hours) contact between implant and tissues were studied in this paper. The passive films are very stable up to +1.8 V; Ti-6Al-4Fe alloy presents pitting attack at a pitting initiation potential of +3.5 V in Ringer 1 solution and at +3.9 V in Ringer 2 solution. The pitting protection potential is about +1.75 V in both solutions; this is a very noble potential. Impedance spectra were modeled with one time constant equivalent electrical circuit, typically for a compact oxide film, for all materials, in all tested solutions. The fitting parameters indicate a long-term stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Souto, R. M. and Burstein, G. T., J. Mater. Sci., Materials in Medicine 7, 337 (1996).Google Scholar
2. Solar, R. J., Pollack, S. R. and Korostoff, E., J. Biomed. Mater. Res. 13, 217 (1979).Google Scholar
3. Williams, D. F., J. Mat. Sci. 22, 3421 (1987).Google Scholar
4. Hoar, T. P. and Mears, D. C., Proc. R. Soc. A 294, 480 (1966).Google Scholar
5. Gluszek, J., Masalski, J., Furman, P. and Nitsch, K., Biomaterials 18, 789 (1997).Google Scholar
6. Burstein, G. T. and Souto, R. M., Electrochim. Acta 40, 1881 (1995).Google Scholar
7. Khan, M. A., Williams, R. L. and Williams, D. F., Biomaterials 17, 2117 (1996).Google Scholar
8. Radovici, O., Mirza-Rosca, J., Llorente, M. L., Gonzalez, S., Vasilescu, E., Popa, M. V. and Drob, P., Rev. Roum. Chim. 44, 11 (1999).Google Scholar
9. Ciolac, S., Vasilescu, E., Drob, P., Popa, M. V. and Anghel, M., Rev. Chim. (Buch.) 50, 36 (2000).Google Scholar
10. Popa, M. V., Vasilescu, E., Drob, P., Vasilescu, C., Mirza-Rosca, I. and Santana, A. Lopez, Mater. Corr. 53, 51 2002.Google Scholar
11. Shalaby, L. A., Corr. Sci. 11, 767 1971).Google Scholar
12. Thompson, N. G. and Buchanan, R.A., J. Biomed. Mater. Sci. 13, 35 (1979).Google Scholar
13. Boukamp, B. A., Solid State Ionics 21 31 (1986).Google Scholar
14. Escudero, M. L. and Gonzalez-Carrasco, J. L., Biomaterials 15, 1175 (1994).Google Scholar
15. Pan, J., Thierry, D. and Leygraf, C., Electrochim. Acta 41, 1143 (1996).Google Scholar