Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T02:05:16.700Z Has data issue: false hasContentIssue false

Correlation between Photoreflectance Spectra and Electrical Characteristics of InP/GaAsSb Double Heterojunction Bipolar Transistors

Published online by Cambridge University Press:  26 February 2011

Hiroki Sugiyama
Affiliation:
NTT Photonics Laboratories, NTT Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Yasuhiro Oda
Affiliation:
NTT Photonics Laboratories, NTT Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Haruki Yokoyama
Affiliation:
NTT Photonics Laboratories, NTT Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Takashi Kobayashi
Affiliation:
NTT Photonics Laboratories, NTT Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Masahiro Uchida
Affiliation:
NTT Advanced Technology Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Noriyuki Watanabe
Affiliation:
NTT Advanced Technology Corporation, 3–1 Morinosato Wakamiya, Atsugi-shi, Kanagawa 243–0198, Japan
Get access

Abstract

We report a photoreflectance (PR) characterization of InP/GaAsSb double-heterojunction bipolar transistor (DHBT) epitaxial wafers grown by metal-organic vapor-phase epitaxy (MOVPE). The origin of the Franz-Keldysh oscillations (FKOs) in the PR spectra was identified by step etching of the samples. FKOs from the InP emitter region were observed in the wafer with low recombination forward current at the emitter-base (E/B) heterojunction. In contrast, they did not appear when recombination current was dominant. The absence of the FKOs from the emitter indicates the high concentration of the recombination centers at the E/B heterojunction. We have also measured PR spectra from InAlP/GaAsSb/InP DHBT wafers. Pronounced FKOs from InAlP emitter reflect the suppression of recombination at E/B heterojunctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bhat, R., Hong, W. P., Caneau, C., Koza, M. A., Nguyen, C. K., and Goswami, S., Appl. Phys. Lett. 68, 985 (1996).Google Scholar
[2] Bolognesi, C. R., Matine, N., Dvorak, M. W., Xu, X. G., Hu, J., and Watkins, S. P., IEEE Electron Device Letters 20, 155 (1999).Google Scholar
[3] McDermott, B. T., Gertner, E. R., Pittman, S., Seabury, C. W., and Chang, M. F., Appl. Phys. Lett. 68, 1386 (1996).Google Scholar
[4] Oda, Y., Watanabe, N., Uchida, M., Sato, M., Yokoyama, H., and Kobayashi, T., J. Crystal Growth 261, 393 (2004).Google Scholar
[5] Watanabe, N., Kumar, S., K., A., Yamahata, S., Kobayashi, T., J. Crystal Growth 195, 48 (1998).Google Scholar
[6] Pollak, F. H., in Handbook on Semiconductors Completely Revised Edition, edited by Moss, T. S. (Elsevier, Amsterdam, 1994), Vol. 2, p. 527.Google Scholar
[7] Calder, I. D., Griswold, E. M. and Hillier, G., Compound Semiconductors 5, 36 (1999).Google Scholar
[8] Nakanishi, H. and Wada, K., Jpn. J. Appl. Phys. Part1, 32, 6206 (1993).Google Scholar
[9] Nakanishi, H. and Wada, K., Mat. Res. Soc. Symp. Proc. Vol. 324, 161 (1994).Google Scholar
[10] Sugiyama, H., Watanabe, N., Watanabe, K., Kobayashi, T., and Wada, K., J. Appl. Phys. 88, 1600 (2000).Google Scholar
[11] Sugiyama, H., Watanabe, N., Watanabe, K., and Kobayashi, T., J. Appl. Phys. 89, 3768 (2001).Google Scholar
[12] Bru-Chevallier, C., Chouaib, H., Arcamone, J., Benyattou, T., Lahreche, H., Bove, P., Thin Solid Films 450, 151 (2004).Google Scholar
[13] Oda, Y., Watanabe, N., Uchida, M., Kurishima, K., and Kobayashi, T., to be published in Proceedings of International Conference on Metal Organic Vapor Phase Epitaxy 2004.Google Scholar
[14] Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T., and Hafizi, M., Appl. Phys. Lett. 56, 1278 (1990)Google Scholar
[15] Yan, D., Pollak, F. H., Boccio, V. T., Lin, C. L., Kirchner, P. D., Woodall, J. M., Gee, R. C. and Asbeck, P. M., Appl. Phys. Lett. 61, 2066 (1992).Google Scholar
[16] Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 92.Google Scholar
[17] Lu, Z. H., Majerfeld, A., Wright, P. D., and Yang, L. W., IEEE J. Selected Topics in Quantum Electronics, Vol. 1, No. 4, 1030 (1995).Google Scholar
[18] Oda, Y. et al., to be submitted in elsewhere.Google Scholar
[19] Kita, T., Kakutani, T., Wada, O., Tsuchiya, T., Sahara, M., and Sakaguchi, H., J. Appl. Phys. 94, 6487 (2003).Google Scholar