Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:41:55.387Z Has data issue: false hasContentIssue false

Correlation Between GaInAsSb Surface Step Structure and Phase Separation

Published online by Cambridge University Press:  10 February 2011

C.A. WANG*
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420-9108
Get access

Abstract

A strong correlation between the surface step structure and phase separation in metastable GaInAsSb epitaxial layers grown by organometallic vapor phase epitaxy has been identified. The full width at half maximum (FWHM) of 4-K photoluminescence (PL) peak energy is used as a semi-quantitative measure of the degree of phase separation. The step structure of GaInAsSb grown at 525 °C is vicinal, while it is step-bunched for layers grown at 575 °C. The corresponding 4-K PL FWHM data indicate that the degree of phase separation is minimized when the layers aregrown at the lower growth temperature. It is proposed that the longer terrace lengths of a step-bunched surface are associated with a longer adatom lifetime compared to a vicinal surface, and thus the adatoms have more time to cluster and phase separate, which is the preferred equilibrium state. Increasing the growth rate, which reduces the adatom lifetime, also reduces the PL FWHM, and thus, the degree of phase separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stringfellow, GB., J. Cryst. Growth 58, 194 (1982).Google Scholar
2. Onabe, K., Jpn. J. Appl. Phys. 21, L323 (1982).Google Scholar
3. Zunger, A. and Mahajan, S., Handbook on Semiconductors, edited by Moss, T.S. (Elsevier, Amsterdam, 1994), 1399.Google Scholar
4. Launois, H., Quillec, M., Glas, F., and Treacy, M.J., Inst. Phys. Conf. Ser. No. 65, 537 (1983).Google Scholar
5. Quillec, M., Benchimol, J.L., Slempkes, S., and Launois, H., Appl. Phys. Lett. 42, 886 (1983).Google Scholar
6. Mukai, S., J. Appl. Phys. 54, 2635 (1983).Google Scholar
7. Lapierre, R.R., Okada, T., Robinson, B.J., Thompson, D.A., and Weatherly, G.C., J. Cryst. Growth 158, 6 (1996).Google Scholar
8. Wang, C.A., Choi, H.K., Oakley, D.C., and Charache, G.W., J. Cryst. Growth 195, 346 (1998).Google Scholar
9. EI-Masry, N.A., Piner, E.L., Liu, S.X., and Bedair, S.M., Appl. Phys. Lett. 72, 40 (1998).Google Scholar
10. McCluskey, M.D., Romano, L.T., Krusor, B.S., Bour, D.P., and Brennan, S., Appl. Phys. Lett. 72, 1730 (1998).Google Scholar
11. Tersoff, J., Phys. Rev. B 56, R4394 (1997).Google Scholar
12. McDevitt, T.L., Mahajan, S., Laughlin, D.E., Bonner, W.A., and Keramidas, V.G, Phys. Rev. B 45,6614 (1992).Google Scholar
13. Norman, A.G., Seong, T-Y., Ferguson, I.T., Booker, G.R., and Joyce, B.A., Semicond. Sci. Technol. 8, S9 (1993).Google Scholar
14. Follstaedt, D.M., Schneider, R.P. Jr, and Jones, E.D., J. Appl. Phys. 77, 3077 (1995).Google Scholar
15. Kasu, M. and Fukui, T., Jpn. J. Appl. Phys. 31, L864 (1992).Google Scholar
16. Ishizaki, J., Goto, S., Kitshida, M., Fukui, T., and Hasegawa, H., Jpn. J. Appl. Phys. 33, 721 (1994).Google Scholar
17. Shinohara, M. and Inoue, N., Appl. Phys. Lett. 66, 1936 (1995).Google Scholar
18. Lee, S.H. and Stringfellow, GB., J. Appl. Phys. 83, 3620 (1998).Google Scholar
19. Cherng, M.J., Jen, H.R., Larsen, C.A., Stringfellow, G.B., Lundt, H., and Taylor, P.C., J. Cryst. Growth 77, 408 (1986).Google Scholar
20. Wang, C.A., Choi, H.K., Ransom, S.L., Charache, C.W., Danielson, L.R., and DePoy, D.M., Appl. Phys. Lett. 75, 1305 (1999).Google Scholar