Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T02:32:50.412Z Has data issue: false hasContentIssue false

Correlation between Deep-Level Defects and Current Collapses in AlGaN/GaN Hetero-Structures Probed by Steady-State Photo-Capacitance Spectroscopy

Published online by Cambridge University Press:  26 January 2011

Yoshitaka Nakano
Affiliation:
Chubu University, Kasugai, Aichi 487-8501, Japan
Yoshihiro Irokawa
Affiliation:
National Institute of Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Yasunobu Sumida
Affiliation:
POWDEC, Oyama, Tochigi 323-0028, Japan
Shuichi Yagi
Affiliation:
POWDEC, Oyama, Tochigi 323-0028, Japan
Hiroji Kawai
Affiliation:
POWDEC, Oyama, Tochigi 323-0028, Japan
Get access

Abstract

We have investigated a correlation between electronic deep levels and current collapses in AlGaN/GaN hetero-structures by capacitance-voltage and photo-capacitance spectroscopy techniques, using Schottky barrier diodes. Three specific deep levels located at ~2.07, ~2.80, ~3.23eV below the conduction band were found to be significantly enhanced for the severe current collapse. These levels probably originate in Ga vacancies and residual C impurities and are probably responsible for the current collapses of the AlGaN/GaN hetero-structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bradley, S. T., Young, A. P., Brillson, L. J., Murthy, M. J., Schaff, W. J., and Eastman, L. F., IEEE Trans. Electron Devices 48, 412 (2001).Google Scholar
2. Luo, B., Johnson, J. W., Kim, J., Mehandru, R. M., Ren, F., Gila, B. P., Onstine, A. H., Abernathy, C. R., Pearton, S. J., Baca, A. G., Briggs, R. D., Shul, R. J., Monier, C., and Han, J., Appl. Phys. Lett. 80, 1661 (2002).Google Scholar
3. Klein, P. B., Binari, S. C., Ikossi, K., Wickenden, A. E., Koleske, D. D., and Henry, R. L., Appl. Phys. Lett. 79, 3527 (2001).Google Scholar
4. Fang, Z.-Q., Look, D. C., Kim, D. H., and Adesida, I., Appl. Phys. Lett. 87, 182115 (2005).Google Scholar
5. Armstrong, A., Chakraborty, A., Speck, J. S., DenBaars, S. P., Mishra, U. K., and Ringel, S. A., Appl. Phys. Lett. 89, 262116 (2006).Google Scholar
6. Nakano, Y., Irokawa, Y., and Takeguchi, M., Appl. Phys. Express 1, 091101 (2008).Google Scholar
7. Hofmann, D. M., Kovalev, D., Steude, G., Meyer, B. K., Hoffmann, A., Eckey, L., Heitz, R., Detchprom, T., Amano, H., and Akasaki, I., Phys. Rev. B 52, 16702 (1995).Google Scholar
8. Fujimoto, H., Saito, W., Yoshioka, A., Nitta, T., Kakikuchi, Y., and Saito, Y., CS MANTECH Tech. Dig. 5.2 (2008).Google Scholar
9. Fang, Z.-Q., Claflin, B., Look, D. C., Green, D. S., and Vetury, R., J. Appl. Phys. 108, 063706 (2010).Google Scholar
10. Armstrong, A., Arehart, A. R., Moran, B., DenBaars, S. P., Mishra, U. K., Speck, J. S., and Ringel, S. A., Appl. Phys. Lett. 84, 374 (2004).Google Scholar