Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:16:12.722Z Has data issue: false hasContentIssue false

Correlation between crystallinity and mid-infrared optical absorption spectra of silicon supersaturated with sulfur

Published online by Cambridge University Press:  19 March 2015

Ikurou Umezu
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Katsuki Nagao
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Tatsuya Nakai
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Muneyuki Naito
Affiliation:
Department of Chemistry, Konan University, Kobe 658-8501, Japan
Mitsuru Inada
Affiliation:
Department of Pure and Applied Physics, Kansai University, Suita 564-8680, Japan
Tadashi Saitoh
Affiliation:
Department of Pure and Applied Physics, Kansai University, Suita 564-8680, Japan
Tamao Aoki
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Akira Sugimura
Affiliation:
Department of Physics, Konan University, Kobe 658-8501, Japan
Get access

Abstract

We prepared silicon hyperdoped with sulfur by ion-implantation followed by pulsed laser melting. Effects of laser fluence during pulsed laser melting and of post-annealing on the silicon hyperdoped with sulfur are investigated. The structure of hyperdoped layer changes from poly-to mono-crystal with increasing laser fluence. Interface between sulfur-implanted-layer and single-crystal substrate disappear above 1.1 J/cm2. The spectral intensity of mid-infrared (MIR) optical absorption increases with crystallinity and spectral shape depends on whether the melt depth during pulsed laser melting reaches interface between implanted layer and single-crystal silicon substrate or not. The MIR absorption intensity rapidly decreases with thermal annealing temperature and almost disappears at 750 °C. The activation energy of conductivity decreases with increasing laser fluence and further decreases with increasing post thermal-annealing temperature. The insulator-metal transition is observed for the sample annealed at 750 °C. These results indicate that there is no direct correlation between MIR optical absorption band and insulator-metal transition.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Luque, A. and Martí, A., Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
Sánchez, K., Aguilera, I., Palacios, P., and Wahnón, P., Phys. Rev. B 79, 7 (2009).Google Scholar
Sánchez, K., Aguilera, I., Palacios, P., and Wahnón, P., Phys. Rev. B 82, 165201 (2010).CrossRefGoogle Scholar
Ertekin, E., Winkler, M., Recht, D., Said, A., Aziz, M., Buonassisi, T., and Grossman, J., Phys. Rev. Lett. 108, 026401 (2012).CrossRefGoogle Scholar
Winkler, M. T., Recht, D., Sher, M.-J., Said, A. J., Mazur, E., and Aziz, M. J., Phys. Rev. Lett. 106, 178701 (2011).CrossRefGoogle Scholar
Olea, J., Toledano-Luque, M., Pastor, D., González-Díaz, G., and Mártil, I., J. Appl. Phys. 104, 016105 (2008).CrossRefGoogle Scholar
Olea, J., González-Díaz, G., Pastor, D., Mártil, I., Marti, A., Antolin, E., and Luque, A., J. Appl. Phys. 109, 063718 (2011).CrossRefGoogle Scholar
Kim, T., Warrender, J., and Aziz, M., Appl. Phys. Lett. 88, 241902 (2006).CrossRefGoogle Scholar
Bob, B. P., Kohno, A., Charnvanichborikarn, S., Warrender, J. M., Umezu, I., Tabbal, M., Williams, J. S., and Aziz, M. J., J. Appl. Phys. 107, 123506 (2010).CrossRefGoogle Scholar
Umezu, I., Warrender, J. M., Charnvanichborikarn, S., Kohno, A., Williams, J. S., Tabbal, M., Papazoglou, D. G., Zhang, X.-C., and Aziz, M. J., J. Appl. Phys. 113, 213501 (2013).CrossRefGoogle Scholar
Antolín, E., Martí, A., Olea, J., Pastor, D., González-Díaz, G., Mártil, I., and Luque, A., Appl. Phys. Lett. 94, 042115 (2009).CrossRefGoogle Scholar
Recht, D., Smith, M. J., Charnvanichborikarn, S., Sullivan, J. T., Winkler, M. T., Mathews, J., Warrender, J. M., Buonassisi, T., Williams, J. S., Gradečak, S., and Aziz, M. J., J. Appl. Phys. 114, 124903 (2013).CrossRefGoogle Scholar
Umezu, I., Naito, M., Kawabe, D., Koshiba, Y., Nagao, K., Sugimura, A., Aoki, T., Inada, M., Saitoh, T., and Kohno, A., Appl. Phys. A 117, 155 (2014).CrossRefGoogle Scholar
Reitano, R., Smith, P. M., and Aziz, M. J., J. Appl. Phys. 76, 1518 (1994).CrossRefGoogle Scholar
Janzen, E., Stedman, R., Grossmann, G., and Grimmeiss, H. G., Phys. Rev. B 29, 1907 (1984).CrossRefGoogle Scholar