Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:51:55.027Z Has data issue: false hasContentIssue false

Core-Shell Nanorods for Efficient Photoelectrochemical Hydrogen Production

Published online by Cambridge University Press:  01 February 2011

Z. G. Yu
Affiliation:
[email protected], SRI International, Applied Physical Sciences Laboratory, 333 Ravenswood Ave, Menlo Park, California, 94025, United States, (650) 859-6456, (650) 859-5036
C. E. Pryor
Affiliation:
[email protected], University of Iowa, Iowa City, Iowa, Optical Science and Technology Center and Department of Physics and Astronomy, United States
W. H. Lau
Affiliation:
[email protected], University of California, Santa Barbara, California, Center for Spintronics and Quantum Computation and Department of Physics, United States
M. A. Berding
Affiliation:
[email protected], SRI International, Menlo Park, California
D. B. MacQueen
Affiliation:
[email protected], SRI International, Menlo Park, California, United States
Get access

Abstract

We propose core-shell InP-CdS and InP-ZnTe nanorods as photoelectrodes in the efficient photoelectrochemical hydrogen production. Based on our systematic study using strain-dependent k.p theory, we find that in these heterostructures both energies and wave-function distributions of electrons and holes can be favorably tailored to a considerable extent by exploiting the interplay between quantum confinement and strain. Consequently, these core-shell nanorods with proper dimensions (height, core radius, and shell thickness) can simultaneously satisfy all criteria for effective photoelectrodes in solar-based hydrogen production.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bard, A. J. and Fox, M. A., Acc. Chem. Res. 28, 141 (1995).Google Scholar
2. See, for example, Hagfeldt, A. and Grätzel, M., Chem. Rev. 95, 49 (1995).Google Scholar
3. Bansal, A., Khaselev, O., and Turner, J. A., Proceedings of the 2000 U.S. DOE Hydrogen Program Review, NREL/CP-570–28890.Google Scholar
4. Varner, K., Warren, S., and Turner, J. A., Proceedings of the 2002 U.S. DOE Hydrogen Program Review, NREL/CP-610–32405.Google Scholar
5. Finklea, H. A., Semiconductor Electrodes (Elsevier, Amsterdam, 1998).Google Scholar
6. Khaselev, O., Turner, J. A., J. Electrochem. Soc. 316, 57 (1991).Google Scholar
7. Kocha, S. S., Turner, J. A., Nozik, A. J., Electroanal. Chem. 27, 367 (1994).Google Scholar
8. Kocha, S. S., Turner, J. A., J. Electrochem. Soc. 142, 2625 (1995).Google Scholar
9. Chandrasekharan, N. and Kamat, P. V., J. Phys. Chem. 104, 10851 (2000).Google Scholar
10. Kato, H., Asakura, K., and Kudo, A., J. Am. Chem. Soc. 125, 3082 (2003).Google Scholar
11. Balet, L. P., Ivanov, S. A., Piryatinski, A., Achermann, M., and Klimov, V. I., Nano Lett. 4, 1485 (2004).Google Scholar
12. Pokatilov, E. P., Fonoberov, V. A., Fomin, V. M., and Devreese, J. T., Phys. Rev. B 64, 245329 (2001).Google Scholar
13. Li, J. and Wang, L. W., Appl. Phys. Lett. 84, 3648 (2004).Google Scholar
14. Lucey, D. W., MacRae, D. J., Furis, M., Sahoo, Y., Cartwright, A. N., and Prasad, P. N., Chem. Materials, 17, 3754 (2005), and REFERENCES therein.Google Scholar
15. Manciu, F. S., Tallman, R.E., McCombe, B.D., Weinstein, B.A., Lucey, D.W., Sahoo, Y., and Prasad, P.N., Physica E 26, 14 (2004).Google Scholar
16. Pryor, C., Phys. Rev. B 57, 7190 (1998).Google Scholar
17. Landau, L. D. and Lifshitz, E. M., Theory of Elaticity (Pergamon, London, 1959).Google Scholar
18. Bahder, T. B., Phys. Rev. B 41, 11992 (1990).Google Scholar
19. Yu, Z. G., Pryor, C. E., Lau, W. H., Berding, M. A., and MacQueen, D. B., J. Phys. Chem. B 109, 22913 (2005).Google Scholar