Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:56:33.834Z Has data issue: false hasContentIssue false

Core-shell Ge Nanoparticles on Oxide Surfaces for Enhanced Interface Stability

Published online by Cambridge University Press:  01 February 2011

Scott K. Stanley
Affiliation:
[email protected], University of Texas at Austin, Chemical Engineering, 1 University Station, C0400, Austin, TX, 78712, United States
John G. Ekerdt
Affiliation:
[email protected], University of Texas at Austin, Chemical Engineering, 1 University Station, C0400, Austin, TX, 78712, United States
Get access

Abstract

Germanium nanoparticles are grown on HfO2 substrates by hot-wire chemical vapor deposition (HWCVD). The oxidation and thermal stability of these unmodified Ge nanoparticles are determined with X-ray photoelectron spectroscopy (XPS). Core-shell nanoparticles were then prepared by growing the Ge cores with HWCVD and selectively growing Si or C shell layers on the Ge cores by conventional CVD. The formation of core-shell nanoparticles was monitored with XPS and low energy ion scattering. Large differences are observed in the thermal stability and oxide formation for unmodified Ge and the different core-shell nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prabhakaran, K., Maeda, F., Watanabe, Y., Ogino, T.. Appl. Phys. Lett. 76 2244 (2000).Google Scholar
2. Leach, W. T., Zhu, J. H., Ekerdt, J. G.. J. Cryst. Growth 240 415 (2002).Google Scholar
3. Leach, W. T., Zhu, J. H., Ekerdt, J. G.. J. Cryst. Growth 243 30 (2002).Google Scholar
4. Stanley, S. K., Joshi, S. V., Banerjee, S. K., Ekerdt, J. G.. J. Vac. Sci. Technol. A 24 78 (2006).Google Scholar
5. Stanley, S. K., Joshi, S. V., Banerjee, S. K., Ekerdt, J. G.. Surf. Sci. Lett. 600 L54 (2006).Google Scholar
6. Coffee, S. S., Stanley, S. K., Ekerdt, J. G.. J. Vac. Sci. Technol. B, In review (2006).Google Scholar
7. Stanley, S. K., Coffee, S. S., Ekerdt, J. G.. Appl. Surf. Sci. 252 878 (2005).Google Scholar
8. Sugiyama, N., Tezuka, T., Mizuno, T., Suzuki, M., Ishikawa, Y., Shibata, N., Takagi, S.. J. Appl. Phys. 95 4007 (2004).Google Scholar
9. Songmuang, R., Jin-Phillipp, N. Y., Mendach, S., Schmidt, O. G.. Appl. Phys. Lett. 88 (2006).Google Scholar
10. Kazimierski, P., Tyczkowski, J., Kozanecki, M., Hatanaka, Y., Aoki, T.. Chem. Mat. 14 4694 (2002).Google Scholar
11. Kumeda, M., Masuda, A., Shimizu, T.. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 37 1754 (1998).Google Scholar