Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T08:22:35.866Z Has data issue: false hasContentIssue false

Copper Tungstate (CuWO4)–Based Materials for Photoelectrochemical Hydrogen Production

Published online by Cambridge University Press:  21 May 2012

Nicolas Gaillard*
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Yuancheng Chang
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Artur Braun
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH - 8600 Dübendorf, Switzerland
Alexander DeAngelis
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
*
(*) Corresponding Author Email: [email protected] Phone: 1.808.956.2342
Get access

Abstract

We report in this communication on the photoelectrochemical (PEC) performances of copper tungstate (CuWO4) material class. This study was performed on 2-micron thick samples fabricated using a low-cost co-sputtering deposition process, followed by an 8-hour long annealing at 500°C in argon. Microstructural analysis pointed out that the post-deposition treatment was critical to achieve photocatalytic activity. Subsequent characterizations revealed that polycrystalline CuWO4 photoanodes owned promising characteristics for solar-assisted water splitting, i.e (i) an optical band-gap of 2.2 eV, (ii) a flat-band potential of -0.35 V vs. SCE and (iii) conduction and valence band-edges that straddle water splitting redox potentials. CuWO4 photoanodes generated 400 μA.cm-2 at 1.6V vs. SCE under simulated AM1.5G illumination in 0.33M H3PO4 with virtually no dark current up to this potential. Impedance analysis pointed out that large charge transfer resistances (2,500 Ω.cm2) could be the main weakness of this material class. Current research activity is focused on solving this issue to achieve higher PEC performances.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fujishima, A., and Honda, K., Nature, 238, 3738 (1972).Google Scholar
[2] Gaillard, N., Chang, Y., Kaneshiro, J., Deangelis, A. and Miller, E. L., Proc. SPIE, Vol. 7770, 77700V; doi:10.1117/12.860970 (2010).Google Scholar
[3] Huda, M., Yan, Y., Moon, C.-Y., Wei, S.-H., Al-Jassim, M., Physical Review B 77, 1 (2008).Google Scholar
[4] Cole, B., Marsen, B., Miller, E., Yan, Y., To, B., Jones, K., Al-Jassim, M., J.Phys. Chem. C 112, 5213 (2008).Google Scholar
[5] Chen, L.; Shet, S.; Tang, H.; Ahn, K.; Wang, H.;Yan, Y.; Turner, J.; Jassim, M.A. J. Appl. Phys. 2010, 108, 043502 1–5.Google Scholar
[6] Doumerc, J.P.; Hejtmanek, J.; Chaminade, J. P.; Pouchard, M.; Krussanova, M. Phys. Stat. Sol. A 1984, 82, 285294.Google Scholar
[7] Yourey, J. E.; Bartlett, B. M. J. Mater. Chem. 2011, 21, 76517660.Google Scholar
[8] Gaillard, N.; Cole, B.; Marsen, B.; Kaneshiro, J.; Miller, E. L.; Weinhardt, L.; Bar, M.;Heske, C. J. Mater. Res. 2010, 25, 17.Google Scholar
[9] Zhu, J.; Wei, S.; Zhang, L.; Mao, Y.; Ryu, J.; Mavinakuli, P.; Karki, A. B.; Young, D. P.; Guo, Z. J. Phys. Chem. C 2010, 114, 1633516342.Google Scholar
[10] Huda, M. N.;Yan, Y.; Moon, C.; Wei, S.; Jassim, M. M. Phys. Rev. B 2008, 77, 195102195114.Google Scholar
[11] Khaselev, O. K.; Turner, J. A., Science 1998, 280, 425427.Google Scholar
[12] Khyzhun, O. Y.; Bekenev, V. L.; Solonin, Y. M., J. Alloys Compd., 480 (2009), 184189.Google Scholar
[13] Lalić, M. V., Popović, Z. S. and Vukajlović, F. R., Comput. Mater. Sci., 2011, 50, 1179.Google Scholar
[14] Arora, S. K.; Mathew, T.; Batra, N.M.. J. Phys. D: Appl. Phys. 1990, 23, 460.Google Scholar