Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T23:23:41.179Z Has data issue: false hasContentIssue false

Copper Phthalocyanine Single-crystal Field-effect Transistors Stable Above 100°C

Published online by Cambridge University Press:  01 February 2011

Koichi Yamada
Affiliation:
[email protected], CRIEPI, 1Materials Science Research Laboratory, 2-11-1, Iwado Kita, Komae, Tokyo, 201-8511, Japan
Jun Takeya
Affiliation:
[email protected], Osaka University, Machikaneyama, Toyonaka, N/A, 560-0043, Japan
Kunji Shigeto
Affiliation:
[email protected], RIKEN, Hirosawa, Wako, N/A, 351-0198, Japan
Kazuhito Tsukagoshi
Affiliation:
[email protected], RIKEN, Hirosawa, Wako, N/A, 351-0198, Japan
Yoshinobu Aoyagi
Affiliation:
[email protected], Tokyo Institute of Technology, Yokohama, N/A, 336-8502, Japan
Yoshihiro Iwasa
Affiliation:
[email protected], Institute for Material Reasearch, Tohoku University, Sendai, N/A, 980-8577, Japan
Get access

Abstract

Intrinsic charge transport of copper phthalocyanine single-crystal field-effect transistors is measured as function of temperature up to above 100°C. The conduction of the accumulated carriers shows hopping-type transport, so that the field-effect mobility increases with temperature following activation-type temperature dependence throughout the measured temperature region. Due to excellent material stability at the high temperature, the mobility values are precisely reproduced after the heat cycles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Menard, E., Podzorov, V., Hur, S.-H., Gaur, A., Gershenson, M. E., and Rogers, J. A., Adv. Mater. (Weinheim, Ger.) 16, 2097 (2004).Google Scholar
2 Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., and Weber, W., J. Appl. Phys. 92, 5259 (2002).Google Scholar
3 Sekitani, T., Iba, S., Kato, Y., and Someya, T., Appl. Phys. Lett. 85, 3902 (2004).Google Scholar
4 Zhang, J., Wang, J., Wang, H., and Yan, D., Appl. Phys. Lett. 84, 142 (2004).Google Scholar
5 Zeis, R., Siegrist, T., and Kloc, C., Appl. Phys. Lett. 86, 022103 (2005).Google Scholar
6 Boer, R. W. I. de, Stassen, A. F., Cracius, M. F., Mulder, C. L., Molinari, A., Rogge, S., and Morpurgo, A. F., Appl. Phys. Lett. 86, 262109 (2005).Google Scholar
7 Podzorov, V., Pudalov, V. M., and Gershenson, M. E., Appl. Phys. Lett. 82, 1739 (2003).Google Scholar
8 Takeya, J., Goldmann, C., Haas, S., Pernstich, K. P., Ketterer, B., and Batlogg, B., J. Appl. Phys. 94, 5800 (2003).Google Scholar
9 Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J. A., and Gershenson, M. E., Phys. Rev. Lett. 93, 086602 (2004).Google Scholar