Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:37:20.855Z Has data issue: false hasContentIssue false

Convenient Molecular Approach of Size and Shape Controlled ZnSe and ZnTe Nanocrystals

Published online by Cambridge University Press:  17 March 2011

Young-wook Jun
Affiliation:
Department of Chemistry and School of Molecular Science – BK21, Korea Advanced Institute of Science and Technology (KAIST), Taejon 305-701, Korea
Jong-Il Park
Affiliation:
Department of Chemistry and School of Molecular Science – BK21, Korea Advanced Institute of Science and Technology (KAIST), Taejon 305-701, Korea
Get access

Abstract

Our study describes a convenient one-step synthesis of ZnSe and ZnTe nanocrystals (NC) whose sizes and shapes are precisely tuned by varing the growth temperature or stabilizing surfactants. We utilized molecular precursors, bis(phenylselenolate or phenyltellurolato)zinc -N,N,N',N'-tetramethylethylenediamine (TMEDA), which effectively produce 0-dimensional sphere or 1-dimensional nanorods of ZnSe or ZnTe, respectively. Nanocrystals are highly monodispersed and luminescent; the emission wavelength varies over a wide range depending on the particle size. This study constitutes a nice demonstration of direct size and shape controlled synthesis of semiconductor nanocrystals and this method can be extended to the synthesis of nanocrystals of other materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peng, X. G., Manna, L., Yang, W. D., Wickham, J., Scher, E., Kadavanich, A. and Alivisatos, A. P., Nature, 404, 59 (2000).Google Scholar
2. Park, S. J., Kim, S., Lee, S., Khim, Z. G., Char, K. and Hyeon, T., J. Am. Chem. Soc., 122, 8581 (2000).Google Scholar
3. Liu, Z., Sakamoto, Y., Ohsuna, T., Hiraga, K., Terasaki, O., Ko, C. H., Shin, H. J. and Ryoo, R., Angew. Chem. Int. Ed. 39,3107 (2000).Google Scholar
4. Kang, H. K., Jun, Y. -W., Park, J. -I., Lee, K. -B. and Cheon, J., Chem. Mater., in press.Google Scholar
5. Leon, R., Petroff, P. M., Leonard, D. and Fafard, S., Science, 267, 1966 (1995).Google Scholar
6. Hu, J., Odom, T. W. and Lieber, C. M., Acc. Chem. Res., 32, 435 (1999).Google Scholar
7. Trentler, T. J., Hickmann, K. M., Goel, S. C., Viano, A. M., Gibbons, P. C. and Buhro, W. E., Science, 270, 1791 (1995).Google Scholar
8. Li, M., Schnablegger, H. and Mann, S., Nature, 402, 393 (1999).Google Scholar
9. Yu, Y. -Y., Chang, S. -S., Lee, C. -L. and C. Wang, R. C., J. Phys. Chem. B, 101, 6661 (1997).Google Scholar
10. Lisiecki, I., Billoudet, F. and Pileni, M. P., J. Phys. Chem., 100, 4160 (1996).Google Scholar
11. Chen, C. -C., Chao, C. -Y. and Lang, Z. -H., Chem. Mater. 12, 1516 (2000).Google Scholar
12. Jun, Y. -W., Koo, J -E. and Cheon, J., Chem. Commun, 1243 (2000).Google Scholar
13. Jun, Y. -W., Choi, C -S. and Cheon, J., Chem. Commun, in press.Google Scholar