Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T03:58:38.691Z Has data issue: false hasContentIssue false

Controlling Organization in Photovoltaic Diodes from Discotic Liquid Crystals via Anode Surface Energy Alteration

Published online by Cambridge University Press:  01 February 2011

Johanna P. Schmidtke
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
Klaus Müllen
Affiliation:
Max Planck Institut für Polymerforschung, Ackermannweg 10 55128 Mainz, Germany
Richard H. Friend
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
Get access

Abstract

We report the control of molecular ordering of discotic liquid crystals in thin, blended films used in photovoltaic diodes. The external quantum efficiency (EQE%) of photovoltaic diodes incorporating a crystalline hexabenzocoronene (HBC) derivative is improved by lowering the surface energy of the transparent anode surface with a short alkyl chain. Upon increasing the length of the functionalizing group on the anode, we find that the relative efficiency of the HBC component in the blend improves. Evidence of changed film morphology is also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W., Appl. Phys. Lett. 48, 183 (1986).Google Scholar
2. Alem, S., de Bettignies, R., Nunzi, J.M., Appl. Phys. Lett. 84 (12), 2178 (2004).Google Scholar
3. Snaith, H., Arias, A.C., Morteani, A. C., et al., Nanoletters 2 (12), 1353 (2002).Google Scholar
4. Peumans, P., Uchida, S., Forrest, S.R., Nature 425, 158 (2003).Google Scholar
5. Bushby, R.J. and Lozman, O.R., Curr. Opin. Colliod Interface Sci. 7 (5–6), 12 (2002).Google Scholar
6. Bunk, O., Nielsen, M.M., Solling, T.I., et al., J. Am. Chem. Soc. 125, 2252 (2003).Google Scholar
7. Hill, J.P., Jin, W., Kosaka, A. et al., Science 304 1481 (2004).Google Scholar
8. Tradz, A., Jeszka, J. K., Watson, M.D., et al., J. Am. Chem. Soc. 125, 1682 (2003).Google Scholar
9. Samori, P., Keil, M., Friedlein, R., et al., J. Phys. Chem. B 105 (45) 11114 (2001).Google Scholar
10. Fleming, A.J., Coleman, J.N., Dalton, A.B., et al., Journal of Phys. Chem. B 107, 37 (2003).Google Scholar
11. van de Craats, A.M., Warman, J.M., Fechtenkotter, A, et al., Adv. Mater. 11, 1469 (1999).Google Scholar
12. van de Craats, A.M., Stutzmann, N., Bunk, O., et al., Adv. Mat. 15 (6), 495 (2003).Google Scholar
13. Schmidt-Mende, L., Fehtenkotter, A., Mullen, K., et al., Science 293, 1119 (2001).Google Scholar
14. Stabel, A., Herwig, P., Mullen, K., et al., Angew. Chem Int. Ed. 38, 3039 (1999).Google Scholar
15. Arias, A.C., Corcoran, N., Banach, M., et al., Appl. Phys. Lett. 80 (10), 1695 (2002).Google Scholar