Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:29:16.000Z Has data issue: false hasContentIssue false

Controlling Materials Architecture on the Nanometer-Scale: PPV Nanocomposites Via Polymerizable Lyotropic Liquid Crystals

Published online by Cambridge University Press:  10 February 2011

Ryan C. Smith
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720-1460
Hai Deng
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720-1460
Walter M. Fischer
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720-1460
Douglas L. Gin
Affiliation:
Department of Chemistry, University of California, Berkeley, CA 94720-1460
Get access

Abstract

We have developed a general strategy for the construction of ordered nanocomposites with hexagonal symmetry, using polymerizable lyotropic (i.e., amphiphilic) liquid crystals. In this approach, self-organizing lyotropic liquid-crystalline monomers are used to form an ordered template matrix in the presence of a reactive hydrophilic solution. Subsequent photopolymerization to lock-in the matrix architecture, followed by initiation of chemistry within the ordered hydrophilic domains to afford solid-state fillers, yields the anisotropic nanocomposites. Composites have been synthesized that have a regular hexagonal arrangement of extended poly(p-phenylenevinylene) (PPV) domains, with a regular interchannel spacing of 4 nm. The photoluminescence of these materials is significantly altered from that of bulk PPV. The dimensions of these nanocomposites can be tuned by varying the size of the hydrophobic tails and/or the nature of the counterion associated with the hydrophilic headgroup of the monomer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Calvert, P.D., MRS Bull. 17, 37 (1992).10.1557/S0883769400046467Google Scholar
2. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheller, A.P., Veis, A., and Caplan, A.I., Science 255, 1098 (1992).Google Scholar
3. Mark, J.E. and Calver, P.D., Mater. Sci. Eng. C 1, 159 (1994) and references therein.Google Scholar
4. Martin, C.R., Chem. Mater. 8, 1739 (1996).Google Scholar
5. Golden, J.H., DiSalvo, F.J., Fréchet, J.M.J., Silcox, J., Thomas, M., and Elman, J., Science, 273, 5276 (1996).Google Scholar
6. Osenar, P., Braun, P.V., and Stupp, S.I., Adv. Mater. 8, 1022 (1996).Google Scholar
7. Gray, D.H., Hu, S., Juang, E., and Gin, D.L., Adv. Mater. 9, 731 (1997).Google Scholar
8. Smith, R.C., Fischer, W.M., and Gin, D.L., J. Am. Chem. Soc. 119, 4092 (1997).10.1021/ja963837wGoogle Scholar
9. Burn, P.L., Holmes, A.B., Kraft, A., Bradley, D.D.C., Brown, A.R., Friend, R.H., Gymer, R.W., Nature 356, 47 (1992).Google Scholar
10. Hide, F., Schwartz, B.J., Díaz-Gracía, M.A., Heeger, A.J., Chem. Phys. Lett. 256, 424 (1996).Google Scholar
11. Jenekhe, S.A. and Osaheni, J.A., Chem. Mater. 6, 1906 (1994) and references therein.Google Scholar
12. Chang, W.P. and Whang, W.T., Polymer 37, 3493, (1996).Google Scholar
13. Samuel, I.D.W., Crystall, B., Rumbles, G., Burn, P.L., Holmes, A.B., and Friend, R.H., Chem. Phys. Lett. 213, 472 (1993).Google Scholar
14. Deacon, B.G. and Phillips, J.R., Coord. Chem. Rev. 33, 227 (1980).Google Scholar
15. Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, New York, 1985, pp. 255257.Google Scholar
16. Percec, V., Heck, J., Johansson, G., Tomazos, D., Kawasumi, M., Chu, P., and Ungar, G., J. Macromol. Sci. Pure Appl. Chem. A 31 (11), 1719 (1994).Google Scholar
17. Roundhill, D.M., Photochemistry and Photophysics of Metal Complexes, Plenum Press, New York, 1994, pp. 308312.Google Scholar