Article contents
Controlling Diffusion of Solutes Through Ionically Crosslinked Alginate Hydrogels Designed for Tissue Engineering
Published online by Cambridge University Press: 15 March 2011
Abstract
Tissue engineering aims at creating new tissues as alternatives to organ transplants. Our approach is to incorporate cells into biodegradable polymer scaffolds designed to temporarily support new tissue formation. An important requirement of scaffolds is homogeneity. Homogeneity ensures structural integrity, uniform distribution of cells, and uniform porosity throughout the scaffold. Controlling pore sizes is necessary to regulate exchange of nutrients and waste products for cells. Pores too large can provide entryway to immune cells that can harm allogenic cells and developing tissue. We have fabricated three-dimensionally defined, homogeneous, ionically crosslinked alginate gels with a controlled slow-gelation system involving CaCO3 and D-glucono-δ-lactone. We varied the structural parameters and alginate types of these gels to control the diffusion of glucose, vitamin B12 and FITC-dextran (molecular weights of 180, 1355 and 9500, respectively) through the gels. Experiments were performed with gel discs placed between side-by-side donor and receptor chambers in a humidified incubator at 37°C. Samples were taken periodically and measured on a UV-Vis spectrophotometer. Generally, diffusion coefficient (D) increased with decreasing solute size. Varying structural parameters of the gels did not have a significant effect on diffusivity of vitamin B12. In contrast, for gels made with a Ca2+ to carboxyl molar ratio of 0.36, D of FITCdextran increased from (2.88 ± 0.52)×10-7 to (4.66 ± 0.48)×10-7 cm2/sec as alginate concentration decreased from 3.2% to 1.5%, respectively. D of FITC-dextran also increased from (3.17 ± 0.30)×10-7 to (4.66 ± 0.48)×10-7 cm2/sec as crosslinking density decreased for 1.5% alginate gels from a Ca2+ to carboxyl molar ratio of 0.72 to 0.36, respectively. D was highest for alginate gels with the highest guluronic acid content. Controlling diffusivity allows alginate gels with specific properties to be fabricated for tissue engineering scaffolding and other biomedical applications.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2001
References
- 2
- Cited by