Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:30:56.817Z Has data issue: false hasContentIssue false

Controlling Crystallization Structures in Thin Si Film for Improving Characteristics of MEMS Resonators

Published online by Cambridge University Press:  13 August 2012

Shinya Kumagai
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, 468-8511, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
Hiromu Murase
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, 468-8511, Japan
Takashi Tomikawa
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, 468-8511, Japan
Syohei Ogawa
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, 468-8511, Japan
Ichiro Yamashita
Affiliation:
Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
Yukiharu Uraoka
Affiliation:
Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0101, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
Minoru Sasaki
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tenpaku, Nagoya, 468-8511, Japan CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
Get access

Abstract

An approach to control the tensile stress and Q factor of thin Si film beams in MEMS resonators was investigated. Metal-induced lateral crystallization (MILC) using Ni nanoparticles that were synthesized within a cage-shaped protein, apoferritin, was applied to a thin morphous Si film for making a MEMS resonator with thin film beams. The MILC produced a thin polycrystalline Si (poly-Si) film with large crystallized domain (50-60 μm) with nearly the same crystalline orientation, whereas the poly-Si film obtained by conventional annealing (without MILC) consisted of small grains (less than 1 μm) with random orientation. The MEMS resonator with a beam made of poly-Si film by MILC was fabricated. The large domain size and the improved crystallinity increased the tensile stress, and resulted in 20% increase in Q factor in the resonant characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cao, K., Liu, W., and Talghader, J. J., J. Microelectromech. Syst. 10, 409 (2001).Google Scholar
2. Huang, H., Winchester, K., Liu, Y., Hu, X. Z., Musca, C. A., Dell, J. M., and Faraone, L., J. Micromech. Microeng. 15, 608 (2005).Google Scholar
3. Miura, H., Ohta, H., and Okamoto, N., Appl. Phys. Lett. 60, 2746 (1992).Google Scholar
4. Ferri, F. A., Zanatta, A. R., and Chambouleyron, I., J. Appl. Phys. 100, 094311 (2006).Google Scholar
5. Sasaki, M., Fujishima, M., Hane, K., and Miura, H., J. Sel. Topics Quantum Electron. 15, 1455, (2009).Google Scholar
6. Yamashita, I., Thin Solid Films 393, 12 (2001).Google Scholar
7. Yamashita, I., Iwahori, K., and Kumagai, S., Biochim. Biophys. Act. 1800, 846 (2010).Google Scholar
8. Okuda, M., Iwahori, K., Yamashita, I., and Yoshimura, H., Biotechnol. Bioeng. 84, 187 (2003).Google Scholar
9. Yoshii, S., Kumagai, S., Nishio, K., Kadotani, A., and Yamashita, I., Appl. Phys. Lett. 95, 133702 (2009).Google Scholar
10. Yamashita, I., Kirimura, H., Okuda, M., Nishio, K., Sano, K., Shiba, K., Hayashi, T., Hara, M., and Mishima, Y., Small 2, 1148 (2006).Google Scholar
11. Yoshii, S., Yamada, K., Matsukawa, N., and Yamashita, I., Jpn. J. Appl. Phys. 44, 1518 (2005).Google Scholar
12. Miura, A., Tsukamoto, R., Yoshii, S., Yamashita, I., and Uraoka, Y., and Fuyuki, T., Nanotechnology 19, 255201 (2008).Google Scholar
13. Kirimura, H., Uraoka, Y., Fuyuki, T., Okuda, M., and Yamashita, I., Appl. Phys. Lett. 86, 262106 (2005).Google Scholar
14. Tojo, Y., Miura, A., Yamashita, I., and Uraoka, Y., Jpn.J. Appl. Phys. 50, 04DL12 (2011).Google Scholar
15. Kumagai, S., Yoshii, S., Matsukawa, N., Nishio, K., Tsukamoto, R., and Yamashita, I., Appl. Phys. Lett. 94, 083103 (2009).Google Scholar
16. Sasaki, M., Sasaki, T., Hane, K., and Miura, H., J. Opt. A 10, 044004 (2008).Google Scholar
17. Lin, L., Pisano, A. P., and Howe, R. T., J. Microelectromech. Syst. 6, 313 (1997).Google Scholar
18. Drieënhuizen, B. P. V., Goosen, J.F.L., French, P.J., and Wolffenbuttel, R.F., Sens. Act. A 3738, 756, (1993).Google Scholar
19. Kumagai, S., Miyachi, S., Yamashita, I., Uraoka, Y., Sasaki, M., Proceeding of Transducers ’11, Beijing, China, pp. 17331736, (2011)Google Scholar