Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T16:06:59.807Z Has data issue: false hasContentIssue false

Controlled Incorporation of Nitrogen at The Top Surface of Silicon Oxide Gate Dielectrics

Published online by Cambridge University Press:  10 February 2011

H. Niimi
Affiliation:
Departments of Materials Science & Engineering, Physics, and Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27965-8202
K. Koh
Affiliation:
Departments of Materials Science & Engineering, Physics, and Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27965-8202
G. Lucovsky
Affiliation:
Departments of Materials Science & Engineering, Physics, and Electrical & Computer Engineering, North Carolina State University, Raleigh, NC 27965-8202
Get access

Abstract

During a high RF power (60–100 W) N20/He remote plasma oxidation of Si(100) at 300 °C, nitrogen atoms have been incorporated at the top surface of an ultra-thin (1.0–2.5 nm) oxide. Online Auger electron spectroscopy (AES) has been used to estimate the dielectric film thickness and track the evolution of the film growth. A chemically shifted Si-LW feature from the high RF power oxidation sample indicates that the nitrogen is bonded to the silicon at the top surface of the oxide film. The stability of the bonded nitrogen is also evident in the persistence of the N-KLL Auger peak following (i) a 30 s rapid thermal anneal (RTA) in Ar at 900 °C and (ii) a remotely excited He plasma treatment at 300 °C for 15 s.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hu, G.J. and Bruce, R.H., IEEE Trans. Electron Devices, ED-32, 584 (1985).Google Scholar
2 Hillenius, S.J., Liu, R., Georgiou, G.E., Field, R.L., Williams, D.S., Kornblit, A., Boulin, D.M., Johnston, R.L., and Lynch, W.T., IEDM Tech. Dig., 252 (1986).Google Scholar
3 Davari, B., Chang, W.H., Wordeman, M.R., Oh, C.S., Taur, Y., Petrillo, K.E., Moy, D., Bucchignano, J.J., Ng, H.Y., Rosenfield, M.G., Hohn, F.J., and Rodriguez, M.D., IEDM Tech. Dig., 56 (1988).Google Scholar
4 Wong, C.Y., Sun, J.Y.-C., Taur, Y., Oh, C.S., Angelucci, R., and Davari, B., IEDM Tech. Dig., 238 (1988).Google Scholar
5 Sun, J.Y.-C., Wong, C., Taur, Y., and Hsu, C.-H., 1989 Symp. VLSI Tech. Dig., 17 (1989).Google Scholar
6 Pfiester, J.R., Baker, F.K., Mele, T.C., Tseng, H.-H., Tobin, P.J., Hayden, J.D., Miller, J.W., Gunderson, CD., and Parrillo, L.C., IEEE Trans. Electron Devices, ED-37, 1842 (1990).Google Scholar
7 Morimoto, T., Momose, H.S., Ozawa, Y., Yamabe, K., and Iwai, H., IEDM Tech. Dig., 429 (1990).Google Scholar
8 Cable, J.S., Mann, R.A., and Woo, J.C.S., IEEE Electron Device Lett., EDL-12, 128 (1991).Google Scholar
9 Lee, D.R., Lucovsky, G., Denker, M.S., and Magee, C., J. Vac. Sei. Technol., A13, 1671 (1995).Google Scholar
10 Lee, D.R., Parker, CG., Häuser, J., and Lucovsky, G., J. Vac. Sei. Technol., B13, 1778 (1995).Google Scholar
11 Niimi, H.H., Koh, K., and Lucovsky, G., ECS Proceedings, 96–12, 623 (1996).Google Scholar
12 Hattangady, S.V., Niimi, H., and Lucovsky, G., Appl. Phys. Lett., 66, 3495 (1995).Google Scholar
13 Lucovsky, G., Yasuda, T., Maniese, L., Powell, G., Aspnes, D.E, Hattangady, S.V., Lee, D.R., Misra, V., Wortman, J.J., Emmerichs, U., Meyer, C, Bakker, HJ., Wolter, F., and Kurz, H., Proceeding of ICPS, Vancouver, Canada, p. 604 (1994).Google Scholar
14 Koh, K., Niimi, H., and Lucovsky, G., Mater. Res. Soc. Symp. Proc, this volume (1996).Google Scholar